	[bookmark: _Hlk67514766]Конкина А.Н. Обзор встроенных средств трассировки ядра LINUX ВЕРСИИ 6.1
// Международный журнал информационных технологий и энергоэффективности. – 2025. – Т. 10 № 9(59) с. 111–115

	[image: Logotip_izdatelstva_1]
	Международный журнал информационных технологий и энергоэффективности

Сайт журнала: http://www.openaccessscience.ru/index.php/ijcse/
	[image: Oblozhka-zhurnala-19-tom1-nomer2-100]

Конкина А.Н. Обзор встроенных средств трассировки ядра LINUX ВЕРСИИ 6.1
// Международный журнал информационных технологий и энергоэффективности. – 2025. – Т. 10 № 9(59) с. 111–115

УДК 004.451.84

ОБЗОР ВСТРОЕННЫХ СРЕДСТВ ТРАССИРОВКИ ЯДРА LINUX ВЕРСИИ 6.1

Конкина А.Н.
ФГАОУ ВО "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)", Москва, Россия (105005, город Москва, 2-Я Бауманская ул, д. 5 стр. 1), e-mail: alina.konckina@yandex.ru
В статье рассматриваются встроенные механизма трассировки ядра операционной системы Linux версии 6.1, не требующих дополнительных пользовательских зависимостей или внешних инструментов, за исключением конфигурации соответствующих параметров при сборке ядра. Указана актуальность задачи рассмотрения встроенных механизмов трассировки ядра операционной системы Linux версии 6.1. Выделены преимущества и недостатки при использовании данных средств, описаны ключевые моменты касательно механизма работы каждого из приведенного средства трассировки, описаны способы взаимодействия со средствами трассировки из режима пользователя.
Ключевые слова: Linux, операционная система, режим ядра, tracepoint, kernel probe, ftrace, dynamic debug, трассировка.

OVERVIEW OF THE LINUX KERNEL TRACING TOOLS IN VERSION 6.1

Kоnkina А.N.
BAUMAN MOSCOW STATE TECHNICAL UNIVERSITY (NATIONAL RESEARCH UNIVERSITY), Moscow, Russia (105005, Moscow city, 2nd Baumanskaya ul, 5 bld. 1), e-mail: alina.konckina@yandex.ru
The article discusses the built-in tracing mechanisms of the Linux kernel version 6.1 operating system that do not require additional dependencies or external tools, except for the configuration of the corresponding parameters when building the kernel. The relevance of the task of considering the built-in tracing mechanisms of the Linux kernel version 6.1 operating system is indicated. The advantages and disadvantages of using these tools are highlighted, key points regarding the operating mechanism of each of the given tracing tools are described, and methods of interaction with tracing tools from user space are described.
Keywords: Linux, operating system, kernel mode, tracepoint, kernel probe, ftrace, dynamic debug, trace.

Под трассировкой понимается процесс получения информации о том, что происходит внутри работающей системы [1]. Полученная в ходе трассировки информация может быть полезной для диагностики и решения проблем внутри неё. Как частный случай в качестве такой системы можно рассматривать операционную систему.
C 1 января 2025г. органам государственной власти Российской Федерации и их заказчикам запрещается использовать иностранное программное обеспечение на принадлежащих им значимых объектах критической информационной инфраструктуры, в том числе операционные систем [2]. Согласно источникам [3], [4], [5], наиболее популярными операционными системами, входящими в единый реестр российских программ для ЭВМ и БД, в 2024 году были «Astra Linux», «РЕД ОС», «Альт Linux», «РОСА», «Основа», использующее ядро операционной системы Linux, где ядро – это компонент операционной системы, содержащий специфический машинный код, предназначенный для выполнения таких операций, как инициализация процессора, обработка прерываний и поддержка многозадачности [6]. При этом, по состоянию на май 2025г. сообщество «Linux Kernel Organization» готово поддерживать вплоть до декабря 2027г. среди имеющихся версий ядра только 6.1 [7].
Таким образом, задача обзора встроенных средств трассировки ядра Linux версии 6.1 является актуальной.
[bookmark: _Hlk205452101]В ядре Linux версии 6.1 предусмотрены два встроенных механизма трассировки, не требующих дополнительных пользовательских зависимостей или внешних инструментов, за исключением конфигурации соответствующих параметров при сборке ядра — это ftrace и dynamic debug [8]. Для того, чтобы пользователю был доступен фреймворк ftrace, необходимо, чтобы в файле настроек ядра .config, который находится в корневой директории исходного кода ядра [9], перед компиляцией были указаны опции CONFIG_TRACING и CONFIG_FTRACE в файле. Интерфейс ftrace реализован в виде файлов в файловой системе debugfs, которая монтируется по пути /sys/kernel/debug [10].
Ftrace поддерживает несколько режимов, в частности — режим трассировщика функций (function tracer) [10]. При использовании этого режима в начале каждой функции ядра добавляется вызов специальной функции mcount(). Если при компиляции ядра в файле конфигурации указана опция CONFIG_DYNAMIC_FTRACE, то вызовы mcount() заменяются на инструкции NOP (no-operation) во время загрузки ядра. При этом во время сборки ядра компилятор сохраняет список всех точек вызова mcount(), а при загрузке эти точки заменяются на инструкции NOP. При активации трассировщика, на основании этого списка происходит подмена адреса на адрес функции mcount(), и трассировку можно выполнять без перекомпиляции. Недостатком такого подхода является то, что, поскольку вызовы mcount() встраиваются компилятором в каждую функцию ядра, результат компиляции по объему будет больше, чем без использования mcount().
Для ftrace также источниками событий трассировки являются также такие механизмы, как tracepoints и kernel probes.
Kernel probes являются механизмом динамической трассировки. Как следствие, с помощью этого механизма можно прервать выполнение кода ядра в любом месте [1]. Существует два типа kernel probes: kprobe и kretprobe (возвратные probes). Ранее существовали jprobes, с помощью которых можно было получить доступ к значениям аргументов трассируемой функции, но они признаны устаревшими [9]. Kretprobe срабатывает при возврате из указанной функции. При регистрации kprobe делается копия проверяемой инструкции и заменяется на инструкцию точки останова (например, int3 в случае архитектур i386 и x86_64). Когда процессор достигает инструкции точки останова, сохраняются значения регистров, а затем управление передается kprobe через механизм notifier_call_chain: вызывается соответствующая функция, связанная с kprobe. Недостатком данного подхода является то, что, поскольку kprobe заменяет инструкцию на программный вызов и требует восстановления контекста после выполнения, это ведёт к дополнительным временным затратам, что особенно критично в случае, если данный подход используется для часто вызываемых функций.
Tracepoint (англ. «точка трассировки») — это специальная вставка в код, регистрирующая определённые системные события [1]. Когда точка трассировки активна, при выполнении соответствующего фрагмента кода вызывается трассировочная функция [11]. Данные трассировки записываются в отладочный кольцевой буфер. Точки трассировки могут быть вставлены в любое место в коде и уже присутствуют в коде многих ядерных функций. Например, в коде функции kmem_cache_alloc присутствует вызов функции trace_kmem_cache_alloc, которая является точкой трассировки [8]. Однако tracepoints являются механизмом, работающим через статическое инструментирование кода, то есть с использованием данного механизма нет возможности добавить точку трассировки после загрузки модуля ядра [11]. Для создания точки трассировки необходимо сначала создать заголовочный файл в директории include/trace/events/ исходных кодов ядра [12]. Имя заголовочного файла должно соответствовать имени подсистемы, в которой будет использоваться точка трассировки, в противном случае возникнет проблема при компоновке. Точка трассировки определяется макросом TRACE_EVENT, который автоматизирует создание точки трассировки и удовлетворяет следующим требованиям, определенных для создания точки трассировки ядра Linux:
1.	Средство должно создавать точку трассировки, которую можно использовать в коде ядра;
2. 	Средство должно создавать функцию обратного вызова, которая может быть вызвана точкой трассировки;
3. 	Функция обратного вызова должна иметь возможность записывать переданные ей данные в кольцевой буфер трассировщика;
4. 	Средство должно создать функцию, которая может анализировать данные, записанные в кольцевой буфер, и преобразовывать их в понятный человеку формат, который трассировщик может отобразить пользователю.
Наконец, механизм dynamic debug предназначен для динамического управления выводом отладочных сообщений ядра Linux при выполнении, без необходимости перекомпиляции ядра или перезагрузки системы [13]. Реализуется этот механизм засчёт вставок в код ядра отладочных макросов (pr_debug(), dev_dbg() и т.п.). В ядре, скомпилированном с поддержкой dynamic debug (для этого необходимо, чтобы в файле конфигурации была указана опция CONFIG_DYNAMIC_DEBUG), каждое использование отладочного макроса регистрируется как точка вызова (callsite) в специальной таблице. Эта таблица (иногда называемая каталогом prdbg) содержит метаданные по каждому такому вызову. Как и ftrace, данный механизм работает с использованием файловой системы debugfs. Так, если в системе присутствует файл /proc/dynamic_debug/control, это означает, что dynamic debug поддерживается и активен. Через этот файл происходит взаимодействие пользователя с dynamic debug. Чтение этого файла выводит текущее состояние всех callsite в текстовом виде. С помощью этого списка можно найти интересующие точки и их состояния, а изменяя этот файл — управлять выводом отладочной информации.
[bookmark: _Hlk205452547]Таким образом, в версии ядра Linux 6.1 реализованы и доступны без дополнительных зависимостей два ключевых механизма трассировки: ftrace и dynamic debug. В качестве источников событий для ftrace используется трассировка точек входа с использованием функции mcount(), tracepoints, а также kernel probes. Вызов mcount() добавляется в начало каждой функции ядра за счет указания лишь одной опции в файле конфигурации, но ведет к увеличению объема исполняемого кода и отсутствию возможности отладки определенных функций, а не всех функция ядра целиком, если в файле конфигурации не указана опция CONFIG_DYNAMIC_FTRACE. Точки трассировки обеспечивают трассировку заранее определённых событий, но требуют модификации исходного кода и их невозможно добавлять без перекомпиляции исходного кода ядра. Механизм kernel probe позволяет динамически трассировать произвольные места в коде, но вносит дополнительные временные затраты при частых вызовах. Механизм dynamic debug предоставляет возможность управления выводом отладочных сообщений при выполнении без перекомпиляции ядра, но применим только к заранее добавленным в код соответствующим макросам.

[bookmark: _Hlk67508803]Список литературы
1. [bookmark: _Hlk67508951]Трассировка и профилирование ядра Linux: краткое введение [Электронный ресурс] // Selectel: [сайт]. URL: https:/​/​old.selectel.ru/​media/​files/​landings/​wp-trassirovka-profilirovanie-yadra-linux-vvedenie.pdf (дата обращения: 05.06.2025).
2. Указ Президента Российской Федерации от 30.03.2022 г. № 166 «О мерах по обеспечению технологической независимости и безопасности критической информационной инфраструктуры Российской Федерации» [Электронный ресурс] URL: http:/​/​www.kremlin.ru/​acts/​bank/​47688 (дата обращения: 06.04.2025).
3. Российские операционные системы — топ отечественных ОС 2024 [Электронный ресурс] URL: https:/​/​softline.ru/​about/​blog/​rossijskie-operacionnye-sistemy (дата обращения: 06.04.2025).
4. Рейтинг российских операционных систем 2024 [Электронный ресурс] URL: https:/​/​market.cnews.ru/​news/​top/​2024-03-26_marketcnews_opublikov
al_rejting (дата обращения: 06.04.2025).
5. ТОП-7 Российских операционных систем 2024: обзор и рейтинг решений [Электронный ресурс] URL: https:/​/​iaassaaspaas.ru/​rating/​russian-os/​top-7-rossiyskih-operatsionnyh-sistem-2024-obzor-i-reyting-resheniy (дата обраще-
ния: 06.04.2025).
6. Смит С. Программирование на языке ассемблера RISC-V. Москва: ДМК Пресс, 2025.
7. Active kernel releases [Электронный ресурс] // The Linux Kernel Archives: [сайт]. URL: https:/​/​www.kernel.org/​category/​about.html (дата обращения: 28.05.2025).
8. Bootlin. Elixir Cross Referencer [Электронный ресурс] URL: https:/​/​elixir.bootlin.com/​linux/​v6.1/​source (дата обращения: 02.06.2025).
9. Keniston J. Kernel Probes (Kprobes) [Электронный ресурс] URL: https:/​/​docs.kernel.org/​trace/​kprobes.html (дата обращения: 17.01.2025).
10. Rostedt S. Debugging the kernel using Ftrace [Электронный ресурс] URL: https:/​/​lwn.net/​Articles/​379903/ (дата обращения: 17.01.2025).
11. Desnoyers M. Using the Linux Kernel Tracepoints [Электронный ресурс] URL: https:/​/​docs.kernel.org/​trace/​tracepoints.html (дата обращения: 23.01.2025).
12. Rostedt S. Using the TRACE_EVENT() macro (Part 1) [Электронный ресурс] URL: https:/​/​lwn.net/​Articles/​379903/ (дата обращения: 23.01.2025).
13. Dynamic debug [Электронный ресурс] // The kernel development community: [сайт]. URL: https:/​/​www.kernel.org/​doc/​html/​v6.1/​admin-guide/​dynamic-debug-howto.html (дата обращения: 30.05.2025).

References
1.	Linux Kernel Tracing and Profiling: A Brief Introduction [Electronic resource] // Selectel: [website]. URL: https://old.selectel.ru/media/files/landings/wp-trassirovka-profilirovanie-yadra-linux-vvedenie.pdf (accessed: 06/05/2025).
2.	Decree of the President of the Russian Federation of 03/30/2022 No. 166 "On measures to ensure the technological independence and security of the critical information infrastructure of the Russian Federation" [Electronic resource] URL: http://www.kremlin.ru/acts/bank/47688 (accessed: 04/06/2025).
3.	Russian operating systems — top domestic OS 2024 [Electronic resource] URL: https://softline.ru/about/blog/rossijskie-operacionnye-sistemy (date of access: 04/06/2025).
4.	Rating of Russian operating systems 2024 [Electronic resource] URL: https://market.cnews.ru/news/top/2024-03-26_marketcnews_opublikov al_rejting (date of access: 04/06/2025).
5.	TOP-7 Russian operating systems 2024: review and rating of solutions [Electronic resource] URL: https://iaassaaspaas.ru/rating/russian-os/top-7-rossiyskih-operatsionnyh-sistem-2024-obzor-i-reyting-resheniy (date of access: 06.04.2025).
6.	Smith S. Programming in the RISC-V assembler language. Moscow: DMK Press, 2025.
7.	Active kernel releases [Electronic resource] // The Linux Kernel Archives: [site]. URL: https://www.kernel.org/category/about.html (date of access: 28.05.2025).
8.	Bootlin. Elixir Cross Referencer [Electronic resource] URL: https://elixir.bootlin.com/linux/v6.1/source (date of access: 02.06.2025).
9.	Keniston J. Kernel Probes (Kprobes) [Electronic resource] URL: https://docs.kernel.org/trace/kprobes.html (date of access: 17.01.2025).
10.	Rostedt S. Debugging the kernel using Ftrace [Electronic resource] URL: https://lwn.net/Articles/379903/ (date of access: 17.01.2025).
11. Desnoyers M. Using the Linux Kernel Tracepoints [Electronic resource] URL: https://docs.kernel.org/trace/tracepoints.html (date of access: 23.01.2025).
12.	Rostedt S. Using the TRACE_EVENT() macro (Part 1) [Electronic resource] URL: https://lwn.net/Articles/379903/ (date of access: 23.01.2025).
13. Dynamic debug [Electronic resource] // The kernel development community: [site]. URL: https://www.kernel.org/doc/html/v6.1/admin-guide/dynamic-debug-howto.html (date of access: 30.05.2025).

4

5
image1.png
OTKPbITAA HAYKA

M30aTeNbCTBO

image2.gif
i@

