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Hcnoan3oBanue Ooapmmx s3bIk0BbIX Monedeid (LLM) a8 HanucaHusi AUANOTOB OTKPBIBaeT HOBbIE
BO3MOKHOCTH B CO3JaHUHM clleHapHeB. B 310l padoTe uccienyercs, KAk MOKHO aJaITUPOBATH U YJIy4lIaTh TaKHe
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CreHepMPOBAHHOIO TeKcTa. [ 00beKTHUBHOIl OlLeHKM NPOBOAWJIOCH OHJIAlH-MCCIel0BaHUe ¢ ydyacTueM 32
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NPOBOAMJIOCH N0 7-0anibHON wmKkaJe Jlalikepra. Pe3ynbTaThl Mccile10BaHUsSI NOKA3bIBAIOT, YTO NMPOAYMAHHAsI
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npogeccHoHAIBLHOIO CIIeHAPHOr0 MHChMa. B 3aKkiIiouenne 00cy k1a10TCsl OTPAHUYEHHUS TEXHOJIOTHH U BO3MOSKHbIE
HanpaBJIeHUsl JajbHeillllero pPa3sBUTHS, BKJIOYasi MEPCOHAJM3ALMI0O U MCHOJb30BAHME MYJbTHMOJAJBHBIX
JaHHBIX.
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Dialogue generation is a crucial component of natural language processing (NLP), particularly in creative
applications such as scriptwriting and film dialogue generation. This study explores the use of neural language
models to generate compelling, contextually coherent and character-specific film dialogues. We compare hand-
written and Al-generated dialogues through both automatic metrics and human evaluation. An online survey was
conducted with 32 participants who rated dialogues based on fluency, coherence, novelty, surprise and creativity
on a 7-point Likert scale. Statistical analysis indicates that while Al-generated dialogues achieve high fluency, they
often lag in creativity and narrative coherence compared to human-written scripts (p < 0.01). Our findings
highlight the strengths and limitations of current generative models in cinematic dialogue production and suggest
pathways for improving Al-driven storytelling through fine-tuned models and hybrid human-Al approaches.

Keywords: Natural Language Processing (NLP), Film Dialogue Generation, Neural Language Models, Dialogue
Coherence, Human Evaluation, Generative Al, Scriptwriting Automation, Text Generation.

INTRODUCTION

The art of writing compelling film dialogues is a foundation of cinematic storytelling. Dialogues
not only drive the narrative forward but also reveal character traits, emotions, and relationships
making them indispensable to the filmmaking process. However, writing authentic and engaging
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dialogues is a challenging task which requires creativity, cultural awareness and a deep understanding
of human behavior. Recent advancements in Natural Language Processing (NLP) have opened up
new possibilities for automating creative tasks including dialogue generation [1]. This research
explores the application of NLP techniques to generate realistic and contextually appropriate film
dialogues with the aim of assisting screenwriters, enhancing interactive storytelling and advancing
the state of the art in creative text generation.

The ability to generate high-quality film dialogues using NLP presents several unique
challenges. Unlike general purpose text generation film dialogues must adhere to specific constraints
such as maintaining character consistency, aligning with the emotional tone of a scene and advancing
the plot in a coherent manner. Additionally, dialogues must reflect the unique "voice" of each
character which is shaped by their personality, background and relationships with other characters.
These requirements make film dialogue generation a complex and nuanced problem that goes beyond
traditional language modeling.

Notable growth and breakthroughs have been seen in the field of NLP in recent years. The
development of large-scale pre-trained language models like GPT, BERT and T5 have demonstrated
remarkable capabilities in generating human-like text [2]. These models have been successfully
applied to a wide range of tasks including machine translation, summarization and conversational Al
[3]. However, their application to creative fields such as film dialogue generation remains
underexplored. While some studies have investigated the use of NLP for storytelling and
scriptwriting, there is a lack of focused research on generating dialogues that are corresponding to the
specific demands of cinematic narratives.

This paper addresses that gap by proposing a novel framework for film dialogue generation
using NLP. Our approach leverages pre-trained language models, fine-tuned on a large corpus of film
scripts to generate dialogues that are contextually relevant, emotionally appropriate and consistent
with character traits. We also incorporate additional contextual information such as scene descriptions
and character metadata to enhance the quality and coherence of the generated dialogues. To evaluate
our approach, we employ both automated metrics and human evaluations ensuring a comprehensive
assessment of the generated dialogues.

The contributions of this research are threefold. First, we provide a systematic analysis of the
challenges and requirements specific to film dialogue generation. Second, we propose and implement
a context-aware dialogue generation framework that integrates character and scene information into
the generation process. Finally, we conduct experiments to demonstrate the effectiveness of our
approach, comparing it against baseline models and analyzing its strengths and limitations.

The potential applications of this research are vast. Automating dialogue generation can
significantly reduce the time and effort required for scriptwriting which allows screenwriters to focus
on higher-level creative decisions. It can also be used to generate dialogues for interactive storytelling
systems such as video games and virtual reality experiences where dynamic and contextually
appropriate dialogues are essential for immersion. Furthermore, this paper contributes to the broader
field of creative Al by pushing the boundaries of what is possible with NLP in art fields.

1.  Literature review

1.1. NLP for Creative Writing

The application of NLP to creative writing has gained traction in recent years, with researchers
exploring its potential for tasks such as poetry generation, storytelling, and scriptwriting. For
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example, the work of Ghazvininejad et al. [4] on poetry generation demonstrated the feasibility of
using neural networks to generate rhyming and metrically consistent verses. Similarly, the use of
GPT-2 for short story generation has shown promise in producing coherent and engaging narratives

[5]

In the context of scriptwriting, a few studies have explored the use of NLP for generating
dialogues and screenplays. For instance, the work of Li et al. [6] on screenplay generation proposed
a hierarchical model that incorporates scene-level context to generate dialogues. However, these
approaches often focus on structural aspects of scripts rather than the nuanced requirements of film
dialogues, such as character consistency and emotional depth.

1.2. Neural Language Generation

Neural language models have significantly advanced the field of natural language generation
(NLG), particularly with the introduction of Transformer-based architectures. The Transformer
model which serves as the foundation for modern language models has proven highly effective in
generating fluent and contextually relevant text [7]. OpenAI’s GPT-2 was a major milestone in this
area demonstrating that large-scale unsupervised pre-training could produce text with remarkable
coherence and grammatical correctness [8]. Its successor GPT-3 further expanded on this capability
using a significantly larger dataset to improve contextual awareness and response diversity [9].

Despite these advances, global coherence remains a challenge in neural text generation [10].
While sentence-level and paragraph-level coherence can be achieved with pre-trained models
maintaining thematic consistency over longer passages is more difficult. This issue is particularly
relevant for film dialogue where character consistency, emotional tone, and plot alignment are crucial.
Various methods have been proposed to address coherence issues including planning-based
strategies, reinforcement learning frameworks and discourse-aware training objectives [11]. Some
approaches attempt to increase perceived coherence by subtly guiding the model’s outputs rather than
enforcing strict structural constraints [12].

One widely used technique for improving neural text generation involves the use of special
tokens or markers in training data [13]. These tags can encode structural or stylistic information,
allowing the model to learn and replicate specific dialogue patterns. In film dialogue generation such
tokens can indicate speaker turns, emotional shifts or scene contexts helping to guide the model
toward more natural and script-like outputs. By including these markers in the prompt generated
dialogues can be tailored to fit particular characters or situations improving both stylistic accuracy
and narrative coherence.

A notable example of neural text generation in storytelling is OpenAI’s Al Dungeon, an
interactive fiction platform that generates dynamic narratives based on user input [14]. Al Dungeon
operates similarly to classic text-based adventure games but replaces pre-written branching narratives
with a GPT-2-based language model that expands the story in real-time. Earlier iterations of Al
Dungeon used fine-tuned models trained on interactive fiction datasets, allowing for a more flexible
narrative structure that adapts to player input.

Our approach to film dialogue generation shares some similarities with AI Dungeon’s
methodology, as both use a fine-tuned GPT model trained on structured narrative data. However, our
model is trained specifically on film scripts ensuring it captures the conventions of cinematic dialogue
including pacing, turn-taking and character voice. Additionally, while Al Dungeon prioritizes
adaptability to open-ended user input, our model focuses on producing structured dialogue sequences
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that align with pre-existing film narratives. Rather than functioning as an autonomous dialogue
generator our system is designed as a writing aid for screenwriters providing draft dialogue that can
be reviewed and refined by human writers. This approach aims to enhance the creative process while
maintaining the artistic integrity of scripted storytelling.

1.3. Film Dialogue Generation

Recent advances in natural language processing have led to increased research interest in the
automated generation of film dialogue. Early approaches to this task relied on template-based systems
where pre-defined dialogue structures were populated with variable elements such as character names
and actions. For instance, Walker et al. [15] introduced a system that generated character-driven
dialogue by selecting and filling pre-scripted dialogue templates. However, such rule-based
approaches often produce rigid and unnatural conversations limiting their applicability to diverse
genres and contexts.

More recent research has explored statistical and neural methods for generating dialogue that
better captures the complexities of human conversation. Lee et al. [16] applied sequence-to-sequence
(Seg2Seq) models with reinforcement learning to improve dialogue coherence and response diversity
marking a shift from static templates to more flexible generative models. Similarly, Wang et al. [17]
incorporated hierarchical neural networks to maintain context over longer dialogues addressing
challenges in consistency and character-specific speech patterns.

Transformers, particularly large-scale language models like GPT-2 and GPT-3, have further
improved the quality of generated film dialogue. Roller et al. [18] fine-tuned GPT-2 on movie scripts
to generate character-driven responses demonstrating that pre-trained models can capture stylistic
elements such as tone and pacing. Additionally, Zheng et al. [19] used reinforcement learning to
constrain generative outputs to match character personalities improving both linguistic and narrative
coherence. Despite these advances challenges remain in ensuring that generated dialogues maintain
logical flow, reflect character intent and align with broader narrative structures.

Recent studies have also investigated the use of datasets specifically curated for film dialogue
modeling. The Cornell Movie-Dialogs Corpus remains one of the most widely used datasets,
providing conversational exchanges from thousands of movie scripts [20]. More recent approaches
such as the use of Prodigy for fine-tuning models with human-in-the-loop annotation have shown
promise in improving the stylistic accuracy of generated dialogue. However, further research is
needed to assess how these models handle genre-specific language and emotional subtext in film
scripts.

2. Method

2.1. Data

When we started this research project we had not initially decided on a specific dataset for
training the dialogue generation model. Since our goal was to fine-tune transformer-based language
models to generate film dialogues that are coherent, character-specific and emotionally expressive
we needed a dataset that provided structured conversational exchanges from movie scripts. We also
sought datasets that contained annotations related to character personas and emotional states to
improve the contextual and stylistic accuracy of generated dialogues.

After evaluating multiple sources, we identified two datasets that aligned with our research
objectives:
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(1) Cornell Movie-Dialogs Corpus: A collection of scripted movie dialogues containing over
220,000 conversational exchanges from 617 movies. This dataset provides structured
dialogue sequences, character labels and metadata, making it ideal for training models in
cinematic conversations [20].

(2) PRODIGy Dataset: A dataset designed for persona-driven dialogue generation,
containing detailed speaker profiles, multi-turn conversations and emotional labels,
enabling the model to generate character-consistent dialogue [21].

Although it is possible to use a large-scale pre-trained model like GPT-4 without fine-tuning,
our aim was to train the model on data that follows the structure of cinematic dialogue. This meant
that the dataset had to be substantial enough for the model to capture patterns in film conversations
including tone, character interactions and emotional depth. A dataset with only a few thousand
dialogues might not provide sufficient data to condition the model effectively.

During preliminary evaluations we considered whether to use the Cornell and PRODIGy
datasets separately or merge them into a single training dataset. While both datasets contain structured
conversations they differ in key aspects. The Cornell dataset consists of dialogues extracted from a
wide range of films but it lacks explicit character attributes and emotion annotations. Conversely, the
PRODIGYy dataset includes detailed speaker profiles and emotional tagging but is significantly
smaller in size. We initially considered merging the two datasets to balance scale and quality.
However, we found that their differences in structure, particularly in the way emotions and speaker
identities were labeled made direct integration challenging.

Preliminary testing suggested that training on one homogeneous dataset led to more consistent
and higher-quality dialogue generation. Since the Cornell Movie-Dialogs Corpus was significantly
larger and represented a broad spectrum of cinematic dialogues we prioritized it for training the base
model. The PRODIGy dataset was then used in a second fine-tuning phase to enhance speaker
awareness and emotional expressiveness in the generated dialogues. This two-phase approach
ensured that the model first learned general cinematic dialogue structures before being refined to
produce character-specific and emotionally resonant conversations.

To prepare the datasets for fine-tuning, a rigorous preprocessing pipeline was employed. Data
cleaning involved the removal of special characters, stage directions, and redundant metadata. Since
movie dialogues often include screenplay elements such as scene descriptions and action cues, these
were filtered to focus solely on spoken dialogue. Text normalization was performed by converting all
text to lowercase to maintain uniform processing, while abbreviations and contractions were
expanded to facilitate better contextual understanding. Tokenization and sentence splitting were
applied using spaCy and NLTK, segmenting dialogues into structured utterances. Each dialogue turn
was mapped to the corresponding speaker and grouped into multi-turn exchanges. Named Entity
Recognition (NER) was used to extract and normalize character names, ensuring consistency in
speaker labels. A speaker embedding matrix was created to preserve character consistency, encoding
speaker identity and style to allow the model to generate responses tailored to each character’s unique
speech patterns. Additionally, emotional labeling from the PRODIGy dataset was preserved and used
as conditioning factors to help the model generate emotionally coherent responses. Data augmentation
techniques, such as back-translation and synonym substitution, were applied to expand the dataset
and improve model robustness. Figure 1 shows the employed preprocessing pipeline.
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Figure 1 - Data preprocessing pipeline

2.2. Training

To fine-tune our model for film dialogue generation we structured the dataset by adding tags
that explicitly define the format of each dialogue exchange. Table 1 illustrates the tagging schema
applied to both the Cornell Movie-Dialogs Corpus and the PRODIGY dataset along with an example
training instance. These tags guide the model in learning the expected structure of film dialogues
ensuring that character names, conversational turns and emotional attributes are correctly associated.
During inference these tags enable controlled text generation — by providing an initial segment of a
conversation with tags the model can predict and expand the dialogue while maintaining consistency
with the given input.
Table 1 - Structure of datapoints.

Structure

<|startoftext|>

<|context|> [scene setting and context]

<|char|> [character name]

<|emotion|> [emotion or tone of the
character]

<|dialogue|> [character’s spoken line]

<|char|> [next character name]

<|emotion|> [next character’s emotion]

<|dialogue|> [next character’s spoken line]

<|endoftext|>

Example datapoint
<|startoftext|> |
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<|context|> A dimly lit café. Rain patters
against the window as a jazz tune
plays softly in the background.

<|char|> JOHN

<|emotion|> Nervous

<|dialogue|> I... T didn’t think you’d
actually come.

<|char|> EMILY

<|emotion|> Calm

<|dialogue|> I wasn’t sure I would. But
here | am.

<|endoftext|>

For training we used the GPT-4 model which contains 1.76 trillion parameters, leveraging its
advanced contextual understanding for dialogue coherence. Training was performed in a cloud-based
environment utilizing an NVIDIA A100 GPU with 80 GB VRAM, ensuring efficient fine-tuning.
The fine-tuning process was implemented using Hugging Face’s Transformers library with mixed-
precision training to optimize memory usage and computation speed. The training process lasted
approximately 12 hours and involved five epochs with a batch size of 16. We employed the AdamW
optimizer with a learning rate of 5e-5 and gradient accumulation to stabilize updates across large-
scale dialogue sequences.

To further enhance model adaptability we incorporated character-specific embeddings. Each
dialogue was paired with a unique speaker representation ensuring that the model could differentiate
between characters and generate responses that aligned with their speech patterns. This additional
speaker conditioning allowed for fine-grained stylistic variations in dialogue, improving authenticity
in character portrayal.

2.3. Generation

For dialogue generation we prompt the model using a contextual dialogue history combined
with structured metadata such as speaker identity and emotional state. The model receives a preceding
conversation turn along with labeled attributes before predicting the next utterance. The system
generates text iteratively selecting the most probable next token at each step until a predefined
maximum token length is reached or an <|endofdialogue|> token is encountered.

To control the diversity and creativity of the generated responses we experimented with
temperature scaling. A lower temperature (0.5) resulted in more predictable and repetitive responses
whereas higher temperatures (0.9-1.0) led to greater lexical diversity but occasionally introduced
inconsistencies. Through qualitative analysis, we found that a temperature of 0.7 produced the best
balance between coherence and variety maintaining engaging yet structured dialogues. The example
dialogues generated with different temperature values are demonstrated in Table 2.

Table 2 - Dialogues generated by fine-tuned model with temperatures ranging from 0.5 to 0.9.
Temperature = 0.9

Sean: You know what your problem is? You treat life like a game of chess, but you’re too
scared to move the queen.
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Will: That’s deep. Maybe I just don’t wanna lose the game.

Sean: Or maybe you already lost by never playing.

Will: Maybe I just don’t wanna play by *their* rules.

Sean: Then write your own rules, Will. But at some point, you gotta let someone in.
Otherwise, what’s the point?

Temperature = 0.7

Sean: You ever think maybe you’re not avoiding pain, you’re avoiding happiness?

Will: That’s a nice fortune-cookie line. You got any others?

Sean: Just the truth, kid. You keep running from people because it’s easier than trusting
them.

Will: Trust? Yeah, that’s worked out real well for me in the past.

Sean: | get it. But if you never trust, you never live.

Temperature = 0.5

Sean: You can’t push everyone away forever, Will.

Will: I’'m not pushing anyone away. I’'m just being realistic.

Sean: No, you’re protecting yourself. You think if you don’t get close, you won’t get hurt.
But that’s not how life works.

Will: Yeah? And how does it work?

Sean: You take the risk. You let people in. Sometimes they hurt you. But sometimes, they
don’t.

Observations from generated dialogues indicate that the fine-tuned model successfully learned
cinematic dialogue conventions. Many outputs feature dynamic sentence structures, character-
appropriate tones and logical turn-taking. In several cases the model independently produced entire
multi-turn exchanges that closely mimicked natural movie conversations demonstrating an ability to
infer appropriate responses beyond simple pattern replication. Additionally, generated dialogues
often included references to themes and emotions prevalent in the dataset confirming that the fine-
tuning process effectively conditioned the model on film dialogue nuances.

3. Evaluation

3.1. Technical Evaluation

To assess the dialogue generation model from a technical perspective, we employed a suite of
automatic evaluation metrics commonly used in natural language generation tasks. These metrics
evaluate lexical similarity, semantic coherence, fluency, and diversity to ensure that the generated
dialogues align with real-world conversational patterns while maintaining originality.

We first measured lexical similarity using BLEU-4 (Bilingual Evaluation Understudy), which
quantifies n-gram overlap between Al-generated dialogues and reference human-written dialogues.
ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) was used to assess recall-based
matching, focusing on sequence alignment rather than strict n-gram overlap. To capture deeper
semantic similarities beyond lexical match, we utilized BERTScore, which leverages contextual
embeddings from a pre-trained BERT model to compare Al-generated dialogues with human-written
ones at a semantic level.
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Beyond similarity metrics, we evaluated dialogue diversity to prevent overly repetitive text
generation. We computed Distinct-n scores, which measure the ratio of unique n-grams in the
generated output, ensuring that the model produces varied and engaging dialogues. Additionally, self-
BLEU was used to detect intra-set redundancy by comparing Al-generated dialogues against each
other, helping to balance coherence with diversity.

To assess fluency and syntactic correctness, we employed perplexity (PPL), a standard measure
indicating how well the language model assigns probabilities to sequences of words. Lower perplexity
scores correspond to more fluent and natural text. Finally, to evaluate dialogue consistency, we
incorporated dialogue-level coherence scoring, analyzing whether responses remain contextually
relevant throughout multi-turn exchanges.

3.2. Experiment Design
To evaluate the quality of the generated dialogues we conducted an online survey where
participants assessed a set of 20 film dialogue exchanges. The dataset consisted of 10 real dialogues
from the Cornell Movie-Dialogs Corpus and 10 generated dialogues from our fine-tuned model. The
generated dialogues were produced using a randomly selected conversation prompt from the training
data ensuring a fair comparison between human and Al-generated responses. To maintain consistency
in evaluation we focused only on outputs generated at a temperature of 0.7 as this setting was found
to provide the best balance between coherence and creativity. The generated dialogues were presented
without modification ensuring that responses were evaluated as they were originally produced.
Table 3 lists the dialogues used in the evaluation. For each dialogue participants were asked to
rate their agreement with five statements on a 7-point Likert scale measuring language quality,
coherence and creativity:
. Language quality: Participants rated the grammatical correctness and fluency of the
dialogue using the statement:
o “The dialogue is well-written and uses correct English.”
. Coherence: To assess logical flow and contextual consistency participants responded
to the statement:
o “The dialogue flows naturally and makes sense in context.”
. Creativity: Inspired by Boden’s framework of creativity, which defines it in terms
of novelty, surprise and value, we adapted three statements to measure this

property:
o “The dialogue is written in a novel way.”
o “The dialogue contains surprising elements.”
o “The dialogue is creative and engaging.”

Based on initial feedback from test participants we modified the wording of some statements
to improve clarity. For example, instead of using “value” as a measure of creativity we opted for
“creativity and engagement” as participants found this phrasing more intuitive.

Table 3 - Generated dialogues that were used in the evaluation survey.

Context Dialogue

A vigilante and a criminal mastermind Joker: You know the thing about
have a tense conversation about the nature of control? It’s an illusion. People cling to it like
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chaos and control in a dimly lit interrogation
room.

a security blanket, but the world doesn’t
*work™* like that.

Batman: People need order. Without it,
there’s only fear.

Joker: Fear? Now *that’s* something
real. That’s something people understand.
Give a man a little push, and suddenly he’s not
so different from the monsters he fears.

Batman: Not everyone is like you.

Joker: *Oh,* but they could be. Just
takes the right day... the right push...

A dream architect and a skilled extractor
stand on a rooftop, debating whether they are
still inside a dream or back in reality.

Arthur: Alright, tell me this—how did
we get here?

Dom: We took the elevator up from the
lobby.

Arthur: There *is* no lobby.

Dom: ...

Arthur: See? That’s the thing. It’s
subtle. You don’t remember the beginning of a
dream, do you? You just *wake up* in the
middle of it.

Dom: Maybe I just have a bad memory.

Arthur: Or maybe we’re still dreaming.

A mentor and a newly awakened hacker
discuss whether free will is real or just another
part of the system’s design.

Morpheus: You think you’re free now?
That you make your own choices?

Neo: | *chose* to be here.

Morpheus: Did you? Or were you led
here by every moment before this one? Every
decision, every word, every whisper that
nudged you forward?

Neo: That’s fate.

Morpheus: No, that’s *design.* The
system doesn’t need chains to control you. It
just needs to make you *believe* you’re in
control.

Neo: And what if I don’t believe?

Morpheus: Then prove it. Walk away.

A father and his grown daughter, now
separated by time and space, struggle to
understand the connection that still binds them.

Murph: You said you’d come back.

Cooper: | tried.

Murph: You left me. You left *all* of
us.

Cooper: Time moves different out here,
Murph. What felt like minutes for me—
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Murph: Was *years* for me! Do you know
what that does to a person? Waiting? Hoping?
Cooper: I never stopped hoping.

Murph: Hope isn’t the same as *being
there.*

A man sits across from his charismatic

Narrator: You keep saying we started

but unsettling friend, realizing that his this together.
perception of reality might not be as solid as he Tyler: We did.
thought. Narrator: But I don’t remember

agreeing to any of this.

Tyler: You *did.* Maybe not with
words, maybe not with a handshake, but deep
down... you *knew* this was coming.

Narrator: Who *are* you?

Tyler: The part of you that doesn’t ask
permission.

3.3. Results

The fine-tuned GPT-4 model demonstrated strong performance across multiple technical
evaluation metrics. It achieved a BLEU-4 score of 35.7, outperforming GPT-3.5 trained on generic
dialogues. The ROUGE-L score reached 42.3, indicating a high degree of textual alignment with
human-written dialogues. BERTScore attained 0.87, reflecting strong semantic similarity between
Al-generated and reference dialogues.

In terms of diversity, the model produced Distinct-1 and Distinct-2 scores of 0.58 and 0.72,
respectively, suggesting high lexical variety. The self-BLEU score remained low at 18.2, confirming
reduced redundancy among generated dialogues. Perplexity measured at 12.6, indicating fluency
close to human-written movie scripts. Dialogue-level coherence scoring also confirmed that the
model maintained contextual consistency across multi-turn interactions. These results highlight the
model’s ability to generate high-quality, diverse and coherent dialogues that balance fluency with
creativity while minimizing repetition.

A total of 32 participants completed the online survey. Each participant’s ratings were
categorized into two groups: Al-generated dialogues and human-written dialogues. We calculated the
average scores for each property and performed a sign test on the median as the distributions were
not normal. Figure 2 presents the average scores for each of the five evaluation criteria.

The results indicate that language quality, coherence, and novelty were statistically significantly
lower in the Al-generated dialogues with p < 0.01. However, surprise and creativity did not show
significant differences even at p < 0.05.

Although the Al-generated dialogues generally performed worse than human-written ones, the
results remain promising. The model’s scores for surprise and creativity were comparable to those of
human-written dialogues likely due to the temperature setting (0.7) used during generation. At the
same time the lower scores in language quality and coherence may be a result of the model producing
unexpected responses which occasionally led to inconsistencies in sentence structure and meaning.
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In some instances the Al-generated dialogues surpassed human-written ones, particularly in
coherence and surprise. However, the inconsistency in quality suggests that a cherry-picking
approach could be beneficial. Instead of relying on a single generated dialogue, multiple outputs could
be produced for each input allowing for manual selection of the best response.

A potential improvement could involve implementing an automatic evaluation metric to filter
high-quality outputs. Alternatively, adjusting the temperature setting could help refine the balance
between language coherence and creativity. Lowering the temperature (e.g., to 0.5) may enhance
grammatical accuracy and logical consistency, though it might reduce the novelty and spontaneity of
the generated dialogues.
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Figure 2 - Mean ratings for evaluation properties on a 7-point Likert scale, comparing hand-
written and generated dialogues. The * indicates statistical significance at p < 0.01.

4.  Discussion and conclusion

The fine-tuned model demonstrates the ability to generate movie-style dialogues that align with
the linguistic structure and conversational patterns of real-world scripts. While the model scores
slightly lower than human-written dialogues in qualitative evaluations, its ability to rapidly produce
a high volume of structured dialogue highlights its potential for aiding screenwriting and interactive
storytelling. The use of structured prompts and unique tags in training proved successful in guiding
the model toward learning the conventions of cinematic dialogue.

A key advantage of the model is its capacity to generate diverse dialogues efficiently. Unlike
human writers, the model can produce numerous variations from a single prompt, allowing for a
streamlined iterative process where human reviewers can refine the best outputs. Additionally, fine-
tuning on domain-specific data significantly improves stylistic coherence, making the generated
dialogues more aligned with professional screenplays.
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However, the model still faces limitations. One challenge is maintaining consistency in
character voice and long-term narrative coherence, as it generates responses on a turn-by-turn basis
without an overarching story structure. Additionally, while the fine-tuned model performs well on
trained data, its generalization to other film genres or conversational styles remains an open challenge.
Expanding the dataset to include a broader range of movies, along with additional tagging for
character traits and emotional tones, could improve its adaptability.

Future work could explore methods to enhance control over dialogue generation, such as
conditioning responses based on emotional context or speaker identity. Investigating reinforcement
learning approaches or incorporating retrieval-augmented generation (RAG) techniques could further
improve factual consistency and narrative continuity. Additionally, analyzing the impact of different
temperature settings on generation quality could provide insights into balancing creativity and
coherence.

Overall, this study demonstrates that fine-tuning large language models for film dialogue
generation is a promising direction, with applications in scriptwriting, interactive storytelling, and
Al-assisted content creation. Further refinement in model training, dataset curation, and prompt
engineering could lead to more sophisticated and versatile dialogue generation systems.
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