T. 9 № 1(39) c. 19–30

Международный журнал информационных технологий и энергоэффективности

Сайт журнала:

http://www.openaccessscience.ru/index.php/ijcse/

УДК 528.4

ИССЛЕДОВАНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СООРУЖЕНИЯ

¹Гущина В.Б., Попова С.К., Григорьев Д.О.

ФГБОУ ВО "НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (СИБСТРИН), Новосибирск, Россия (630008, город Новосибирск, Ленинградская ул., д. 113), e-mail: ¹nicka.guschina@yandex.ru

В статье рассматривается исследование точности определения высоты сооружения теодолитом 2Т30 и тахеометром Ruide R2, представлена оценка точности измерения двумя приборами и расхождение значений.

Ключевые слова: Высота сооружения, теодолит, электронный тахеометр, угол наклона, оценка точности, относительная ошибка.

INVESTIGATION OF THE ACCURACY OF DETERMINING THE HEIGHT OF THE STRUCTURE

¹Gushchinav.V.B., Popova S.K., Grigoriev D.O.

NOVOSIBIRSK STATE UNIVERSITY OF ARCHITECTURE AND CIVIL ENGINEERING (SIBSTRIN), Novosibirsk, Russia (630008, Novosibirsk, Leningradskaya str., 113), e-mail: ¹nicka.guschina@yandex.ru

The article examines the study of the accuracy of determining the height of a structure with the theodolite 2T30 and the total station Ruide R2, presents an assessment of the accuracy of measurement with two devices and the discrepancy between the values.

Keywords: Height of the structure, theodolite, electronic total station, angle of inclination, accuracy assessment, relative error.

Введение

При инженерных и строительных работах зачастую необходимо измерить высоту сооружения, использование лазерного дальномера и измерительной рулетки не всегда возможно. Например, часто возникает вопрос: проедет ли крупногабаритная машина по дороге, над которой свисает ЛЭП; для вычисления объем штабеля (кучи угля) на разрезах используется высота штабеля. Именно в таких случаях вычисляют высоту сооружения через вертикальные углы.

Целью работы является исследование точности измерения высоты сооружения теодолитом и тахеометром.

Постановка задачи

В соответствии с целью работы поставлены следующие задачи:

T. 9 № 1(39) c. 19–30

- 1) вычислить высоту сооружения с использованием теодолита 2Т30;
- 2) вычислить высоту сооружения с использованием электронного тахеометра Ruide R2;
- 3) выполнить оценку точности определения высоты сооружения 2 приборами;
- 4) сравнить полученные результаты и сделать выводы.

Методика исследований

На расстоянии d от измеряемого объекта, минимально равном $1,5\div2*h$ (где h – высота сооружения), устанавливается прибор и измеряются углы наклона v_1 и v_2 наведением на верхнюю и на нижнюю точку сооружения при кругах лево и право (рис. 1).

По формуле вычисляется высота измеряемого объекта:

$$h = d \cdot (tgv_1 - tgv_2) \tag{1}$$

Для контроля применяется вторая постановка прибора на расстоянии d', измеряются углы наклона v'_1 и v'_2 (Рисунок 1) [1].



Рисунок 1 – Схема измерения высоты сооружения.

Измерения углов наклона производились теодолитом 2Т30 (Рисунок 2), расстояние от прибора до объекта измерялось лазерным дальномером. Вторым прибором, используемым в работе был электронный тахеометр Ruide R2 (Рисунок 3).

Рисунок 2 — Теодолит 2Т30

Рисунок 3 – Taxeoмetp Ruide R2

T. 9 № 1(39) c. 19–30

Экспериментальная часть

В работе было выполнено измерение высоты сооружения с двух постановок прибора по 15 раз.

Результаты измерений углов наклона и вычисления высоты сооружения для теодолита представлены в таблице 1 для 1-ой постановки прибора и в таблице 2 для 2-ой постановки прибора, расстояния от теодолита до колонны были измерены с помощью лазерной рулетки.

Результаты измерений углов наклона и вычисления высоты сооружения для тахеометра представлены в таблице 3 для 1-ой постановки прибора и таблице 4 для 2-ой постановки прибора на слайде, расстояния от теодолита до колонны были измерены с помощью электронного тахеометра.

Таблица 1 — Результаты измерения углов и вычисления высоты сооружения теодолитом с 1-ой постановки прибора

	1		тановк	ппрпо	ори						
Номе р	№ изме					1	постанов	вка приб	opa		
стан ции	рени я	ŀ	ζЛ	ŀ	КΠ		M0		ν	d	h
7		۰	'	۰	,	٥	'	٥	'	М	М
		+17	56,0	-17	50,5	+0	2,8	+17	53,2		2.005
	1	-14	31,5	+14	37,5	+0	3,0	-14	34,5	_	2,885
	2	+17	56,0	-17	50,5	+0	2,8	+17	53,2		2.005
	2	-14	32,0	+14	37,5	+0	2,8	-14	34,8		2,885
	3	+17	55,5	-17	50,5	+0	2,5	+17	53,0		2,884
	3	-14	31,5	+14	37,0	+0	2,8	-14	34,3		2,004
	4	+17	56,5	-17	51,0	+0	2,8	+17	53,7		2,886
	4	-14	32,0	+14	37,5	+0	2,8	-14	34,8		2,000
	5	+17	56,0	-17	51,0	+0	2,5	+17	53,5		2,886
	3	-14	32,0	+14	37,5	+0	2,8	-14	34,8		2,880
	6	+17	56,5	-17	51,0	+0	2,8	+17	53,7		2,886
	0	-14	32,5	+14	37,0	+0	2,3	-14	34,8	2,8	2,880
7	7	+17	57,0	-17	51,5	+0	2,8	+17	54,2	4,950	2,887
	,	-14	32,0	+14	37,5	+0	2,8	-14	34,8		2,007
	8	+17	56,5	-17	51,0	+0	2,8	+17	53,7		2,886
	0	-14	32,0	+14	37,5	+0	2,8	-14	34,8		2,000
	9	+17	56,0	-17	51,0	+0	2,5	+17	53,5		2,884
		-14	31,5	+14	36,5	+0	2,5	-14	34,0		
		+17	56,0	-17	51,0	+0	2,5	+17	53,5		2,885
	10	-14	31,0	+14	37,5	+0	3,3	-14	34,3		
		+17	56,0	-17	52,0	+0	2,0	+17	54,0		2,884
	11	-14	31,0	+14	36,0	+0	2,5	-14	33,5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		+17	56,0	-17	52,0	+0	2,0	+17	54,0		2,884
	12	-14	32,0	+14	35,0	+0	1,5	-14	33,5		
		+17	56,0	-17	50,5	+0	2,8	+17	53,2		2,886

Гущина В.Б., Попова С.К., Григорьев Д.О. Исследование точности определения высоты сооружения // Международный журнал информационных технологий и энергоэффективности.— 2024. —

	13	-14	33,0	+14	37,5	+0	2,3	-14	35,3	
		+17	56,0	-17	50,5	+0	2,8	+17	53,2	2,883
	14	-14	31,0	+14	36,0	+0	2,5	-14	33,5	2,003
		+17	56,0	-17	51,5	+0	2,3	17	53,7	2,885
	15	14	2,0	14	36,0	0	2,0	-14	34,0	2,003

Таблица 2 – Результаты измерения углов и вычисления высоты теодолитом со 2-ой постановки прибора

	постановки	Прис	ора								
Номер	№ измерения					2 г	постано	вка пр	ибора		
станции		I	КЛ	I	КΠ	N	10		ν	d	h
		0	1	0	'	۰	'	۰	•	M	M
	1	+7	35,5	-7	30,5	+0	2,5	+7	33,0		2,880
	1	-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,000
	2	+7	36,0	-7	29,5	+0	3,3	+7	32,7		2,880
	2	-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,000
	3	+7	36,0	-7	30,5	+0	2,8	+7	33,2		2,880
	3	-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,000
	4	+7	36,0	-7	31,0	+0	2,5	+7	33,5		2,882
		-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,002
	5	+7	35,5	-7	31,0	+0	2,3	+7	33,2		2,880
	3	-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,000
	6	+7	36,0	-7	30,0	+0	3,0	+7	33,0		2,880
	0	-6	12,0	+6	18,0	+0	3,0	-6	15,0		2,000
	7	+7	35,5	-7	30,5	+0	2,5	+7	33,0		2,880
1.1	,	-6	12,0	+6	17,5	+0	2,8	-6	14,8	11,000	2,000
11	8	+7	35,5	-7	30,5	+0	2,5	+7	33,0	11,900	2,880
	0	-6	12,0	+6	17,5	+0	2,8	-6	14,8		2,000
	9	+7	35,5	-7	30,5	+0	2,5	+7	28,0		2,863
		-6	12,5	+6	17,5	+0	2,5	-6	15,0		2,003
	10	+7	35,5	-7	30,5	+0	2,5	+7	33,0		2,880
		-6	12,5	+6	17,5	+0	2,5	-6	15,0		2,000
	11	+7	35,5	-7	30,0	+0	2,8	+7	32,7		2,876
		-6	12,0	+6	17,0	+0	2,5	-6	14,0		
	12	+7	30,0	-7	25,0	+0	2,5	+7	27,5		2,884
	- -	-6	18,0	+6	25,0	+0	3,5	-6	21,5		_,50.
	13	+7	30,0	-7	34,5	+0	2,3	+7	27,7		2,884
	13	-6	18,5	+6	24,0	+0	2,8	-6	21,3		2,007
	14	+7	30,0	-7	25,0	+0	2,5	+7	27,5		2,882
	14	-6	18,0	+6	24,0	+0	3,0	-6	21,0		2,002

Гущина В.Б., Попова С.К., Григорьев Д.О. Исследование точности определения высоты сооружения // Международный журнал информационных технологий и энергоэффективности.— 2024. —

				` '					
15	+7	30,0	-7	24,5	+0	2,8	+7	27,2	2,881
13	-6	18,0	+6	24,0	+0	3,0	-6	21,0	2,001

Для наглядности результаты измерений высоты сооружения теодолитом представлены в виде диаграммы (Рисунок 4).

Рисунок 4 — График изменения высоты колонны, определенной с использованием теодолита

Таблица 3 – Результаты измерения углов и вычисления высоты тахеометром с 1-ой постановки прибора

				I					1 пост	анов	ка приб	opa			
Номер	№ измерени		КЛ			КΠ			МО			ν		d	h
станции	R	٥	,	"	٥	,	"	0	,	"	٥	,	"	М	M
	1	+17	27	35	-17	27	36	+0	00	00	+17	27	35		2,884
	1	-15	02	38	+15	02	16	-0	00	11	-15	02	27		2,004
	2	+17	28	2	-17	27	38	+0	00	12	+17	28	14		2,885
	2	-15	02	42	+15	02	25	-0	00	08	-15	02	34		2,003
	3	+17	28	43	-17	27	53	+0	00	25	+17	28	18		2,884
	3	-15	01	54	+15	01	58	+0	00	02	-15	01	56		2,004
	4	+17	27	25	-17	27	48	-0	00	12	+17	27	37		2,884
7	т	-15	02	44	+15	02	24	-0	00	10	-15	02	34		2,004
	5	+17	27	28	-17	28	9	-0	00	20	+17	27	48	4.0.50	2,884
	3	-15	02	38	+15	01	58	-0	00	20	-15	02	18	4,950	2,004
		+17	27	25	-17	27	45	-0	00	10	+17	27	35		2,884
	0	-15	02	38	+15	01	55	-0	00	22	-15	02	16		2,004
	7	+17	27	3	-17	27	23	-0	00	10	+17	27	13		2,884
	,	-15	02	35	+15	02	25	-0	00	05	-15	02	30		2,007
	8	+17	27	18	-17	27	29	-0	00	06	+17	27	24		2,884

Гущина В.Б., Попова С.К., Григорьев Д.О. Исследование точности определения высоты сооружения // Международный журнал информационных технологий и энергоэффективности.— 2024. —

	-15	02	48	+15	02	19	-0	00	14	-15	02	34		
9	+17	27	19	-17	27	32	-0	00	06	+17	27	25		2,884
9	-15	02	48	+15	02	30	-0	00	09	-15	02	39		2,004
10	+17	27	22	-17	27	32	-0	00	05	+17	27	27		2,884
10	-15	02	44	+15	02	24	-0	00	10	-15	02	34		2,004
11	+17	27	20	-17	27	30	-0	00	05	+17	27	25		2,884
11	-15	02	45	+15	02	19	-0	00	13	-15	02	32		2,004
12	+17	27	18	-17	27	41	-0	00	12	+17	27	30		2,884
12	-15	02	38	+15	02	30	-0	00	04	-15	02	34		2,004
13	+17	27	25	-17	27	42	-0	00	08	+17	27	33		2,884
13	-15	02	42	+15	02	15	-0	00	14	-15	02	28	4,950	2,004
14	+17	27	30	-17	27	45	-0	00	08	+17	27	38		2,884
14	-15	02	38	+15	02	16	-0	00	11	-15	02	27		2,004
15	+17	27	22	-17	27	45	-0	00	12	+17	27	34		2,884
13	-15	02	44	+15	02	12	-0	00	16	-15	02	28		2,004

Таблица 4 — Результаты измерения углов и вычисления высоты тахеометром с 2-ой постановки прибора

								2	постан	ювка	прибој	pa			
Номер	№ измерен		КЛ			КП			МО			ν		d	h
станции	ия	0	,	"	٥	•	"	0	,	"	٥	,	"	M	М
	1	+7	22	26	-7	22	25	-0	00	01	+7	22	27		2,881
	1	-6	25	53	+6	25	38	-0	00	08	-6	25	45		2,001
	2	+7	22	15	-7	22	38	-0	00	12	+7	22	27		2,881
	2	-6	25	53	+6	25	30	-0	00	12	-6	25	41		2,001
	3	+7	22	20	-7	22	31	-0	00	06	+7	22	26		2,881
	3	-6	25	53	+6	25	34	-0	00	10	-6	25	43		2,001
	4	+7	22	20	-7	22	23	-0	00	02	+7	22	22		2,881
	7	-6	25	46	+6	25	43	-0	00	02	-6	25	44		2,001
	5	+7	22	18	-7	22	20	-0	00	01	+7	22	19		2,880
		-6	25	50	+6	25	36	-0	00	07	-6	25	43		2,000
_	6	+7	22	08	-7	22	23	-0	00	08	+7	22	16	44.000	2,881
7		-6	25	56	+6	25	56	-0	00	00	-6	25	56	11,900	2,001
	7	+7	22	17	-7	22	20	-0	00	02	+7	22	19		2,881
	,	-6	25	03	+6	25	33	-0	00	15	-6	25	48		2,001
	8	+7	22	17	-7	22	29	-0	00	06	+7	22	23		2,881
		-6	25	56	+6	25	41	-0	00	08	-6	25	48		_,,,,,
	9	+7	22	11	-7	22	22	-0	00	06	+7	22	17	-	2,881
	_	-6	25	03	+6	25	37	-0	00	13	-6	25	50		,
	10	+7	22	12	-7	22	32	-0	00	10	+7	22	22		2,881
		-6	25	59	+6	25	34	-0	00	12	-6	25	47	-	
	11	+7	22	14	-7	22	13	-0	00	00	+7	22	14		2,880
	10	-6	25	46	+6	25	37	-0	00	04	-6	25	42		2.001
	12	+7	22	11	-7	22	29	-0	00	09	+7	22	20] [2,881

Гущина В.Б., Попова С.К., Григорьев Д.О. Исследование точности определения высоты сооружения // Международный журнал информационных технологий и энергоэффективности.— 2024. —

T. 9 № 1(39) c. 19–30	T.	9 №	1(39)	c. 19-	-30
-----------------------	----	-----	-------	--------	-----

	-6	25	53	+6	25	35	-0	00	09	-6	25	44	
13	+7	22	15	-7	22	26	-0	00	06	+7	22	21	2,880
13	-6	25	40	+6	25	40	-0	00	00	-6	25	40	2,000
1.4	+7	22	20	-7	22	32	-0	00	06	+7	22	26	2.001
14	-6	25	53	+6	25	27	-0	00	13	-6	25	40	2,881
15	+7	22	17	-7	22	22	-0	00	02	+7	22	19	2.881
13	-6	25	47	+6	25	46	-0	00	00	-6	25	47	2.001

Для наглядности результаты измерений высоты сооружения тахеометром представлены в виде диаграммы (Рисунок 5).

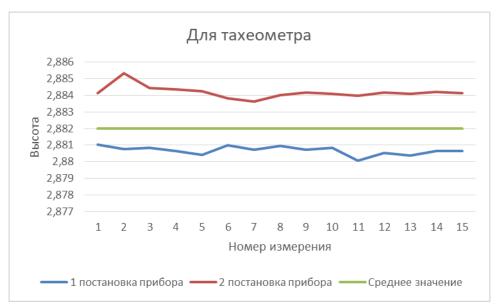


Рисунок 5 – График изменения высоты колонны, определенной с использованием электронного тахеометра

Оценка точности результатов измерения

Измерение высоты является косвенным методом измерений, [1] поэтому для оценки точности такого типа используют функцию измеренных величин, определяемую по формуле (2) [2]:

$$z = f(x_1, x_2, x_3, ... x_n)$$
 (2)

Квадрат средней квадратической ошибки функции общего вида равен сумме произведений квадратов частных производных по каждому аргументу на среднюю квадратическую ошибку соответствующего аргумента.

В данном случае данная формула будет иметь вид:

$$m_h^2 = \left(\frac{\partial f}{\partial d}\right)^2 \cdot m_d^2 + \left(\frac{\partial f}{\partial v_1}\right)^2 \cdot m_{v_1}^2 + \left(\frac{\partial f}{\partial v_2}\right)^2 \cdot m_{v_2}^2 \tag{3}$$

Частные производные:

T. 9 No 1(39) c. 19–30
$$\frac{\partial f}{\partial d} = (tg v_1 + tg v_2)$$

$$tg v_1 + tg v_2 = const, a (cx)' = c$$
(4)

$$\frac{\partial f}{\partial v_1} = d \cdot \frac{\partial tgv_1}{\partial v_1} + d \cdot \frac{\partial tgv_2}{\partial v_1} = d \cdot \frac{\partial tgv_1}{\partial v_1} + 0 = d \cdot \frac{1}{\cos^2 v_1}$$
 (5)

$$\frac{\partial f}{\partial v_2} = d \cdot \frac{\partial tgv_1}{\partial v_2} + d \cdot \frac{\partial tgv_2}{\partial v_2} = d \cdot \frac{1}{\cos^2 v_2}$$
 (6)

Подставив (3), (4), (5) в (6) получим:

$$m_{h}^{2} = (tg v_{1} + tg v_{2})^{2} \cdot m_{d}^{2} + d^{2} \cdot (\frac{1}{\cos^{4}v_{1}}) \cdot m_{v1}^{2} + d^{2} \cdot (\frac{1}{\cos^{4}v_{2}}) \cdot m_{v2}^{2}$$

$$(7)$$

Заметим, что $d^2(tg v_1 + tg v_2)^2 = h^2$

Обе части выражения делятся на h^2 и вносятся под знак радикала:

$$\frac{m_h}{h} = \sqrt{\frac{m_d^2}{d^2} + \left(\frac{d}{h}\right)^2 \cdot \left(\frac{1}{\cos^4 v_1} + \frac{1}{\cos^4 v_2}\right) \cdot \left(\frac{m_v}{\rho}\right)^2},\tag{8}$$

где $m_v = 0.5'$ – среднеквадратическая погрешность измерения вертикального угла для теодолита; $m_v = 2^{"}$ среднеквадратическая погрешность измерения вертикального угла для электронного тахеометра; $\frac{m_d}{d} = 3$ мм – погрешность измерения длины тахеометром; $\rho^{'} =$ 3438 – число минут в радиане.[2]

Получим относительную среднюю квадратическую ошибку определения высоты сооружения:

- 1. Для теодолита:
- При постановке на станцию № 7:

$$\frac{m_{\rm h}}{h} = \sqrt{0.0003^2 + (2.0)^2 \cdot \left(\frac{1}{\cos^4 17^\circ} + \frac{1}{\cos^4 14^\circ}\right) \cdot \left(\frac{0.5}{3438}\right)^2} = \frac{1}{1900}$$
(9)

1.2. При постановке на станцию № 11:

$$\frac{m_{\rm h}}{h} = \sqrt{0.0003^2 + (2.0)^2 \cdot \left(\frac{1}{\cos^4 7^\circ} + \frac{1}{\cos^4 6^\circ}\right) \cdot \left(\frac{0.5}{3438}\right)^2} = \frac{1}{2000}$$
 (10)

- Для электронного тахеометра:
- 2.1. При постановке на станцию №7

$$\frac{m_{\rm h}}{h} = \sqrt{0.0003^2 + (2.0)^2 \cdot \left(\frac{1}{\cos^4 17^\circ} + \frac{1}{\cos^4 15^\circ}\right) \cdot \left(\frac{2}{206264,806}\right)^2} = \frac{1}{3300}$$
(11)

2.2. При постановке на станцию № 11

$$\frac{m_{\rm h}}{h} = \sqrt{0.0003^2 + (2.0)^2 \cdot \left(\frac{1}{\cos^4 7^\circ} + \frac{1}{\cos^4 6^\circ}\right) \cdot \left(\frac{2}{206264,806}\right)^2} = \frac{1}{3300}$$
 (12)

Для экспериментального выявления точности измерения высоты сооружения были взяты результаты измерений высоты колонны.

В ходе работы высота колонны была определена дважды теодолитом и тахеометром, и за окончательный результат было принято среднее значение высоты. Результаты измерений приведены в таблицах 5 и 6.

Дважды измерив для контроля одну и ту же величину, была вычислена средняя квадратическая погрешность отдельного измерения.

Пусть имеется ряд парных равноточных измерений h_1 и h'_1 , h_2 и h'_2 , ...,

 h_n и h'_n

Разность двойных измерений будет: $\Delta h_1 = h_1 - h'_1$, $\Delta h_n = h_n - h'_n$

Если бы все измерения были безошибочными, то эти разности равнялись бы нулю. Следовательно, разности двойных измерений можно рассматривать как истинные погрешности. Тогда средняя квадратическая погрешность разности двойных измерений равна[2]:

$$m\Delta h = \sqrt{\frac{\sum \Delta h^2}{n}}$$
 (13)

Погрешность одной разности из двух равноточных измерений:

 $m\Delta h=m_h\sqrt{2},$ где m_h - погрешность отдельного измерения, отсюда:

$$m = \frac{m\Delta h}{\sqrt{2}} = \sqrt{\frac{\sum \Delta h^2}{2n}}$$
 (14)

Таблица 5 – Результаты двукратных измерений высоты сооружения теодолитом

		-	Геодолит		
No	h_1	h'1	h_{cp}	Δh	Δh^2
1	2,885	2,880	2,882	0	0
2	2,885	2,879	2,882	0	0
3	2,884	2,880	2,882	0	0
4	2,886	2,882	2,884	+2	4
5	2,886	2,880	2,883	+1	1
6	2,886	2,880	2,883	+1	1

Гущина В.Б., Попова С.К., Григорьев Д.О. Исследование точности определения высоты сооружения // Международный журнал информационных технологий и энергоэффективности.— 2024. —

7	2,887	2,880	2,884	+2	4
8	2,886	2,880	2,883	+1	1
9	2,884	2,863	2,874	-8	64
10	2,885	2,880	2,882	0	0
11	2,884	2,876	2,880	-2	4
12	2,884	2,884	2,884	+2	4
13	2,886	2,884	2,885	+3	9
14	2,883	2,882	2,882	0	0
15	2,885	2,881	2,883	+1	1
Σ				+3	93

Таблица 6 – Результаты двукратных измерений высоты сооружения тахеометром

		Ta	хеометр		
№	h_2	h'2	h_{cp}	Δh	Δh^2
1	2,884	2,881	2,882	0	0
2	2,885	2,881	2,883	+1	1
3	2,884	2,881	2,882	0	0
4	2,884	2,881	2,882	0	0
5	2,884	2,880	2,882	0	0
6	2,884	2,881	2,882	0	0
7	2,884	2,881	2,882	0	0
8	2,884	2,881	2,882	0	0
9	2,884	2,881	2,882	0	0
10	2,884	2,881	2,882	0	0
11	2,884	2,880	2,882	0	0
12	2,884	2,881	2,882	0	0
13	2,884	2,880	2,882	0	0
14	2,884	2,881	2,882	0	0
15	2,884	2,881	2,882	0	0
			Σ	+1	1

В эксперименте:

1) Для теодолита n=15, $\sum \Delta {h_1}^2 = 44$, подставляя эти данные в формулу (14), получаем:

$$m_1 = \sqrt{\frac{44}{30}} = 1,2 \text{ MM} \tag{15}$$

Для тахеометра n=15, $\sum \Delta h_2^2 = 4$, подставляя эти данные в формулу (14), получаем:

$$m_2 = \sqrt{\frac{4}{30}} = 0.4 \text{MM} \tag{16}$$

Средняя высота сооружения h_1 =2,882м по теодолиту. Тогда относительная ошибка определения высоты сооружения будет равна:

$$\frac{m_{h1}}{h_1} = \frac{1,2_{MM}}{2882_{MM}} = \frac{1}{2400}$$

Средняя высота сооружения h_1 =2,882м по тахеометру. Тогда относительная ошибка определения высоты сооружения будет равна:

$$\frac{m_{h2}}{h_2} = \frac{0.4_{MM}}{2882_{MM}} = \frac{1}{7900}$$

Заключение

Таким образом, сравнивая результаты, полученные теодолитом и тахеометром, представлены в таблице 7.

Таблица 7 — Сравнительная таблица результатов вычислений относительной погрешности высоты объекта

	Относительная средняя квадратическая ошибка определения высоты сооружения		Относительная ошибка определения высоты сооружения
Для теодолита	$\frac{1}{1900}$	$\frac{1}{2000}$	$\frac{1}{2400}$
Для тахеометра	$\frac{1}{3300}$	$\frac{1}{3300}$	$\frac{1}{7900}$

Выводы:

- Относительная средняя квадратическая ошибка определения высоты сооружения при двукратных измерениях у тахеометра оказалась ниже, чем у теодолита в 1,7 раз.
- Относительная ошибка определения высоты сооружения у тахеометра оказалась также ниже, чем у теодолита в 3,3 раза.
- Использование тахеометра дает меньшую погрешность вычислений и оптимизирует производство инженерно-геодезических измерений, что сокращает трудовые и временные затраты на производство такого рода измерений.
- Использование тахеометра является более эффективным, за счет того, что прибор является более универсальным, потому что на нем одновременно возможно реализовывать ряд других задач.

Список литературы

T. 9 № 1(39) c. 19–30

- 1. Кулешов Д. А., Стрельников Г. Е., Рязанцев Г. Е., Инженерная геодезия: Учебник для вузов. М.: Картгеоцентр Геодезиздат. 1996. 304 с.: ил.
- 2. Геодезия: учебное пособие для вузов/Г.Г. Поклад, С.П. Гриднев. М.: Академический Проект, 2007. -592c.

References

- 1. Kuleshov D. A., Strelnikov G. E., Ryazantsev G. E., Engineering geodesy: Textbook for universities. M.: Kartgeocenter Geodesizdat. 1996. p.304 ill.
- 2. Geodesy: a textbook for universities/G.G. Poklad, S.P. Gridnev. –M.: Academic Project, 2007. p.592.