Konnos JI.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //
MexayHapoaHbIN XypHaAI HHOOPMAITMOHHBIX TEXHOJOTHH 1 dHeprodddextuBHocTr. — 2023. —
T.8 No 8(34) c. 4-16

MesxayHapOoaHbIH)KypHAT HHOOPMAIIMOHHBIX TEXHOIOTHH 1
9HEProdGHEeKTUBHOCTH
Caiit xxypHaa:

http://www.openaccessscience.ru/index.php/ijcse/

“3aTeNbCTEO

VJIK 004.9

PEAIMBALIUA APUOMETHYECKOI'O KAJIBKYJATOPA HA A3BIKE OBJECT
PASCAL

Konnos /I.B.
Vuusepcumem Llenmpanvroii @ropudsi, Opranodo, CIIIA (32816, Opaanoo, Byrveap [lenmpanvnas
Dunopuoa, 4000), e-mail: konnov72@knights.ucf.edu

B crarbe mnpeacTraBieH 0030p OCHOBHBIX MPUHIMIOB TMOCTPOEHHS] apU(PMETHUYECKOr0 KaJIbKYJIATOpAa,
BKJIIOYAIOIIET0 KOMNbIOTEPU3UPOBAHHbIE PACYEThI M0 AJTOPUTMY MAHEBPOBOiIi CTAHIMHU U MOJLCKOI HOTAIIUH
PRN. IIpenioxena nporpaMMHasi peaju3anus 0yayliero 06,JJa4HOr0 MHKEHEPHOI0 KAJIbKYJISITOpa Ha puMepe
JclExprEval.pas u3 oubiauoreku koga JEDI (JCL), onHoii U3 HauOoJiee MOJjIep:KUBAeMbIX M AKTYaJIbHbIX
oubauorek sizbika Object Pascal na cerogusimHuii aeHb. PaccMoTpeHbI BONPOCHI TOKEHU3AIUH BXOJTHOIO
BbIPA:KEHHsl, TMOCTPOeHMs JiepeBa pa30opa, PeKYPCHBHOIO CHycKa U BbIYUCJIeHUs: jaepeBa. OTMeyeHBbI
TpedoBaHUs, HeOOXOAUMBIE /ISl peaJH3alii Ka4eCTBEHHOT0 MPOAYKTA H NMpPHBeIeHbI MPUMEPHI peaau3anuu
Ko1a. /lano 060cHOBaHHE MPENMMYIIECTB HCMOJIb30BAHUS KAJIbKYJIATOPAa B HHKEHEPHBIX pacyeTax B COCTaBe sApa
TexXHH4YecKkol cucrembl. Ha ocHOBe 3TOro uccjieqoBaHMs NpeioiKeHbl IYTH U NOAXO0AbI K pa3padoTke Oyayuiero
MHOT0M0JIb30BATEJHCKOT0 CHCTEMHOT0 KAJBKYJIATOpPa. O00CHOBAHA HOBH3HA HCC/IET0BAHUS KAK HANPaBJIeHHE
HHTETPANMH KAJBKYJIATOPA ¢ 00JAYHBIMH CHCTEMAMH M OTAeJIeHHe CKPUNTOBBIX (OpMYJ NMPUIOKEHHS OT
KOMIIHJINPYEMOT0 KOJa.

KiroueBbie cmoBa: Matematudeckuii 3Bamoatop, JEDI (JCL), Delphi, TOkeHBI, JepeBO CHHTaKCHYECKOTO aHAIN3a,
JIEpeBO CHUHTAKCHYECKOTO aHalli3a, CHHTAKCHYECKUN aHallM3 BBIPAXKCHHUH, PEKYPCHBHBIA CITyCK, allTOPHTM
COPTUPOBOYHOM CTaHLIMU, OJbcKas Hotauusi PRN, crek.

IMPLEMENTATION OF ARITHMETIC CALCULATOR IN OBJECT PASCAL

Konnov D.V.
University of Central Florida, Orlando, USA (4000 Central Florida Blvd., Orlando, 32816), e-
mail: konnov72@knights.ucf.edu

The article provides an overview of the fundamental principles of constructing an arithmetic calculator including
computerized calculations Shunting Yard algorithm and Polish notation PRN. Proposed a software
implementation of a future Cloud-based engineering calculator using the JcIExprEval.pas as an example from the
JEDI code library (JCL), one of the most supported and relevant libraries of the Object Pascal language nowadays.
The issues of tokenization of the input expression, building a parse tree, and recursive descent and evaluation of
the tree are considered. The requirements necessary for the implementation of a quality product are noted and
examples of code implementation are given. The rationale for the advantages of using a calculator in engineering
calculations as part of the core of an engineering system is given. Proposed ways and approaches for the
development of the future multiuser system calculator based on this research. The novelty of the research is
substantiated as a direction of integration of the calculator with Cloud systems and separation of application
scripted formulas and compile code.

Keywords: Evaluator, JEDI (JCL), Delphi, tokens, parse tree, Parsing Tree, expression parsing, recursive descent,
Shunting Yard Algorithm, Polish notation PRN, stack.

http://www.openaccessscience.ru/index.php/ijcse/
mailto:konnov72@knights.ucf.edu

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

The Problem.

Building an arithmetic calculator involves implementing an algorithm that can calculate
mathematical expressions using operations such as addition, subtraction, multiplication, division, and
parentheses. Let us immediately define this concept. A calculator is a software device that receives
an arithmetic or algebraic expression as a string as input. This apparatus has an interface for adding
or determining the values of variables used in the evaluated expression, as well as events that are
called during the parsing of the expression, where the values of variables can be substituted
dynamically. The result of the Calculator is a floating-point value, i.e., the result of calculating the
expression given as input. Let's consider the main stages of developing an arithmetic expression
calculator in the Delphi environment using the example of the Evaluator from the JEDI library (JCL)
[1], and then we will analyze the detailed aspects of the internal implementation of the parser.

To start, a little history:

The Shunting Yard algorithm [2] is a classic method for parsing infix mathematical expressions
and converting them to reverse Polish notation (RPN) [3], also known as postfix notation. RPN is a
format in which operators are placed after their operands, making it easier to evaluate expressions
using the stack approach.

The algorithm was introduced by Edsger W. Dijkstra [4] in 1961 and is commonly used in
compilers, interpreters, and calculator programs. The key idea of the Shunting Yard algorithm is to
use two stacks [5], one for operators and one for output (RPN) values, to process an expression
respecting operator precedence and associativity.

Here is a step-by-step explanation of how the shunting station algorithm works:

While there are tokens to be read:

Read a token

If it's a number add it to the queue

If it's an operator

While there's an operator on the top of the stack with greater precedence:
Pop operators from the stack onto the output queue
Push the current operator onto the stack

If it's a left bracket push it onto the stack

If it's a right bracket

While there's not a left bracket at the top of the stack:
Pop operators from the stack onto the output queue.
Pop the left bracket from the stack and discard it

13. While there are operators on the stack, pop them into the queue

The resulting RPN expression can be evaluated using the stack approach, in which the operands
are placed on the stack, and when an operator occurs, the required number of operands are retrieved
from the stack and the result of the operation is placed back on the stack.

The Shunting Yard algorithm ensures that the RPN expression maintains the correct order of
operations based on operator precedence and associativity and allows the expression to be evaluated
efficiently without using parentheses for grouping.

Let's convert the expression: (2 + 3) * 4" to RPN

Step 1: Initialize an empty stack for statements and an empty queue (or list) for output (RPN)
values (operations are presented in Table 1).

© N WNRE

el
A

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —

T.8 Ne 8(34) c. 4-16

Step 2: Iterate over the tokens of the input infix expression "(2 + 3) * 4™

Table 1 - Step 1 operations

Input Token Stack (operators) Output Queue (RPN)
((

2 (2

+ + (2

3 +(23

) 23+

* * 23+

4 * 23+4

Step 3: Extract all remaining statements from the statement stack and add them to the output
queue, the operator (*) remains the last on the stack:
Table 2 — Step 3 operations
Input Token

Stack (operators) Output Queue (RPN)

23+4%

The RPN expression — "2 3 + 4 *" is the equivalent of the original infix expression "(2 + 3) *
4" in reverse Polish notation (RPN). In RPN, operators come after their operands, and parentheses
are not needed for grouping, because the order of operations is implicitly determined by the position
of the operators in the expression.

To evaluate the RPN expression "2 3 + 4 *", a stack-based approach can be used. As follows:

1. Initialize the empty stack.

2. lterate over an RPN expression from left to right.

3. If the token is a number (operand), then it is placed on the stack.

4. Ifthe token is an operator, then the required number of operands is extracted from the stack,
an arithmetic operation is performed, and the result is placed back on the stack.

5. Steps 3 and 4 continue until all tokens have been processed.

6. After processing all the tokens, the result will be at the top of the stack.

Evaluate the RPN expression "2 3 + 4 *" (operations are presented in Table 3):
Table 3 — Operations

Token Stack
2 2

3 23

+ 5

4 54

* 20

After processing all the tokens, the result in the stack is 20. Therefore, the actual result of the
expression "2 3 + 4 *" is 20.

Materials and research methods

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

The Object Pascal language in modern days has proven itself as a reliable, high-level
programming language that allows you to build systems on the scale of large corporations and
enterprises. The development of an arithmetic engineering calculator [6] in this language is a
completely natural and essential task of any corporate software product in the Delphi environment

[71

The JclExprEval.pas module in the JEDI Code Library (JCL) provides a flexible expression
evaluator capable of analyzing and evaluating mathematical expressions. It allows you to
dynamically evaluate arithmetic, Boolean, and comparison expressions at runtime. Let's take a closer
look at how the JclExprEval.pas parser works. The main functionality of JcIExprEval is to parse the
input expression, building a parsing tree (Parse Tree) [9] and its evaluation. Below are abstracted
implementation details that may not be properly aligned with the latest library code but with the
purpose of explaining how it all works.

First, the input expression must be tokenized.

Tokenization: This is the division of an input mathematical expression into individual tokens,
including numbers, operators, and parentheses [10]. The expression is first tokenized by breaking it
down into individual components, such as numbers, operators, functions, and variables. Tokens are
the building blocks that the analyzer uses to understand the expression when building a parse tree.
Each token is represented by a TExprToken record that contains information about its type, value,
and position in the expression.

The TExprToken record is a fundamental data structure used in the JcIExprEval.pas module to
represent individual tokens in the parsed expression. It contains information about the type, value,
and position of the token in the original expression. The definition of the TExprToken record is shown
in Figure 1.

type
TExpxToken = record
TokenType: TExprTokenType;
TokenValue: Variant;
Position: Integer;

end;

Figure 1 — Structure of the expression token.

1. TokenType: The TokenType field specifies the type of token, which can be one of the
following values (defined in the JclExprEval.pas module):

e etUnknown: Unknown type.

e etNumber: Numeric value.

e etVariable: Variable name.

e etOperator: operator.

o etLeftParenthesis: left parenthesis "(*.

o etRightParenthesis: right parenthesis ")".

e etFunction: A token that represents the name of the function.

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

2. TokenValue: The TokenValue field contains the actual value of the token. Its data type is
Variant, which means that it can store different types of values depending on the type of token:

e etNumber: numeric value in the form of Double.

e etVariable: variable name as a string.

e etOperator: operator as a string.

e etFunction: function name as a string.

3. Position: The Position field specifies the position of the token in the original expression as
an index. The index is zero-based, which means that the first character in the expression has position
0.

Each token is part of an expression, including numbers, operators, and parentheses, and stores
the corresponding properties in a TExprToken record. TExprToken entries are temporarily stored in
an internal array in the order in which they appear in the expression. This array of TExprToken entries
is used to represent the tokenized expression during the parsing step.

For example, the input expression "2 + 3 * 4" is tokenized, and TExprToken entries are created
for each token. The resulting array of TExprToken records might look like this:

[Token(2), Token(+), Token(3), Token(*), Token(4)]

Each element of this array is a TExprToken entry. This is important for the parsing and
evaluation process because the Token helps the JcIExprEval module understand the structure of the
expression and perform the necessary operations to evaluate it. Next, the analyzer starts parsing the
token array. When the algorithm encounters each token, it uses the information stored in the token to
build the structure of the parse tree and make decisions about how to handle subsequent tokens.
Depending on the type of token, the algorithm creates operator nodes, operand nodes, or functional
nodes. In the process of processing tokens, the algorithm builds TJcIExprNode objects and collects
these nodes (nodes) into a parsing tree (Figure 4).

The structure of TJclExprNode is shown in Figure 2. In JclExprEval.pas, each node in the parse
tree is represented by a specific class named TJcIExprNode. The TJcIExprNode class is the base class
for various types of nodes in the parser tree, including operator nodes, operand nodes, and functional
nodes. TJclExprNode (the base class for all nodes) represents a generic node in the parse tree.
Contains properties and methods that are common to all types of nodes. The TJclExprNode class and
its subclasses in the parse tree support referencing child nodes through their FLeft and FRight
properties. The parse tree is built using these references, which allows nodes to be linked to each
other hierarchically. The TJclExprNode class has properties that define the structure of the parse tree
and how the nodes are connected:

Konnos /I.B. Peanuzanus apudmerndeckoro kanbkyssitopa Ha sisbike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

type
TIclExprNode = class(TObject)
private
FLeft: TlclExprNode; /{ Reference to the left child node (if any).
FRight: TJlclExprNode; [/ Reference to the right child node (if any).
[/ Other fields and methods specific to the base class
public

// Public methods and properties, common to all node types.

end;

Figure 2 — The structure of the node of the parsing tree.

FLeft: This property contains a reference to the left child node of the current node. It allows for
a hierarchical organization of nodes, where the left child node is usually the operand, argument, or
first operand for the binary operator.

FRight: This property contains a reference to the right child node of the current node. It is used
for binary operators, where the right child represents the second operand.

In subclasses of TJclExprNode (Figure 3), Certain types of nodes can extend these properties
as needed to meet their specific requirements.

tType
TIJclExprOpNode = class(TJclExprNode)
private
FOperator: string; // The operator symbol (e.g., '+', "-', "*', '/")
[/ Other fields and methods specific to operator nodes.
public
[/ Additional properties and methods specific to operator nodes.
end;
type
TJclExprConstNode = class(TJclExprNode)
private
FValue: Double; J/ The numeric value of the constant.

[/ Other fields and methods specific to constant nodes.
public
// Additional properties and methods specific to constant nodes.

end;

Figure 3 — An example of declaring classes derived from TJclExprNode nodes.

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —

T.8 Ne 8(34) c. 4-16

JclExprEval.pas implements the TJclExprOpNode node class and its descendants, each of
which performs a specific arithmetic function, for example:

assignment statement "'="

Boolean operators (e.g., AND, OR)

relational operators (e.g., >, <, =)

noouToBsie oneparopsl (Hampumep, AND, OR, XOR)
shift operators (e.g., SHL, SHR)

addition operator "+"

subtraction operator "-"

Multiplication operator "*"

division operator "/"

operator obtaining the remainder by division "%" (mod)
unary operators (e.g., unary minus)

Degree Operator """

factorial operator "!"

TJclExprNode also has the following subclasses:

TJclExprVarNode: variable.

TJclExprConstNode: constant (numeric value).

TJclExprFuncNode: represents a function call. Contains properties for storing the function
name and argument node references.

Parsing Tree

The next step in processing a tokenized expression is to build a parsing tree (Figure 4). This is
the process of constructing a hierarchical representation of the structure of an expression. Expression
nodes, put together using FLeft, Fright pointers, form a parsing tree. A tree is a tree-like data
structure in which each node represents an operator or function, and its child elements represent
operands or arguments. In the JcIExprEval.pas module of the JEDI Code Library (JCL), the recursive
descent algorithm does not use the stack to build the parse tree. The algorithm directly builds the
parse tree, recursively [11] evaluating the expression based on the rules of grammar and the
precedence of operators. This is implemented using a recursive function called ParseExpression. This
function is responsible for the recursive evaluation of the input expression and the construction of the
parse tree. The following is the declaration of the ParseExpression function.

function ParseExpression(const Expression: string:; Variakles: TJclExprVariakles = nil;
Functions: TJclExprFunctions = nil; const ParserOptions: TJclExprParserOptions = [];
const CustomCptions: TJclExprCustomOptions = []): TJclExprHode:

Figure 4 — ParseExpression function declaration.

Function parameters:

Expression: Input expression for analysis and evaluation.

Variables: A set of variables that can appear in an expression (optional).

Functions: A set of user-defined functions that can be used in an expression (optional).
ParserOptions: additional parameters that control parsing behavior.

10

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

e CustomOptions: More configurable options to enhance parsing capabilities.
Return value:
e TJclExprNode: The root of the parse tree that represents the input expression.

The ParseExpression function is the entry point for starting the recursive descent process for
parsing and building the parse tree. It performs recursive parsing and evaluation of the expression,
creating the appropriate nodes and linking them together to form a hierarchical parse tree structure.
As soon as the ParseExpression function is called with an input expression, it returns the root of the
parse tree, which can later be used for evaluation or other operations on the expression.

For example, with the expression "2 + 3 * 4", the parse tree might look like this:

I\

/\

Figure 5 — Parsing tree.

In this example, the + operator node has 2 as the left child node and the * operator node as the
right child node. The * operator node, in turn, has 3 as the left child node and 4 as the right child
node.

It is easy to see: The nodes of the OPERANDS do not point to any other nodes in the parsing
tree, and the nodes of the OPERATORS and FUNCTIONS point to the nodes of the OPERANDS.

Let's summarize the algorithm for constructing a parsing tree:
1. Tokenization: The input expression is tokenized, and each token (e.g., numbers, operators,
functions, variables) is represented by a TExprToken record.

2. Building a Parse Tree: Once tokenization is complete, the Recursive Descent algorithm
begins to build the parsing tree. It recursively processes tokens, evaluating the expression based on
grammar rules and operator precedence.

3. Node creation and linking: When the recursive descent algorithm encounters each
TExprToken, it creates the corresponding nodes and links them together as children and parents to
form the parse tree structure. The algorithm sets the FLeft and FRight properties of operator nodes
based on their operands to properly link them together.

4. Operator precedence: The parsing algorithm considers the priority of operators to ensure
that expressions are evaluated according to the correct order of operations (for example,
multiplication before addition).

11

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

5. Associativity: For operators with the same priority, the parsing algorithm considers their
associativity (left-to-right or right-to-left) to maintain the correct order of calculation.

6. Hierarchical relationships: The recursive descent process provides a hierarchical
organization of nodes in the parse tree based on the structure of the expression.

7. Root node: After the recursive descent process is complete, the root node of the parse tree
represents the entire expression, and the parse tree is ready for evaluation.

Evaluation. Building a parse tree is an intermediate step in the overall process. To get the final
result of the expression, the algorithm needs to evaluate the constructed parsing tree. The evaluation
process involves traversing the tree and applying mathematical operations defined by operators and
functions. The algorithm will recursively evaluate subexpressions and combine their results based on
the operators and functions encountered during the traversal.

For example, consider the expression "2 + 3 * 4" (Figure 5):

To evaluate the expression, the algorithm will run at the root of the parse tree (the + operator).
It will recursively traverse the tree, evaluating the left and right subtrees. The algorithm will first
evaluate the operator node * (3 * 4 = 12) and replace the operator node * with its result (12). The
updated tree is shown in Figure 6.

/\

Figure 6 — The Parsing Tree in the process of parsing.

The algorithm will now evaluate the operator node + (2 + 12 = 14) and replace the operator
node + with its result (14).

The result of the expression is 14.

It should be noted that to ensure the quality of the calculator, the correct handling of errors of
invalid expressions, division by zero, inappropriate parentheses, etc., must be implemented, and
support for additional functions such as trigonometric functions, exponentiation, variables, and much
more can be added (Figure 7).

12

Konnos /I.B. Peanuzanus apudmerndeckoro kanbkyssitopa Ha sisbike OBJECT PASCAL //
MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

begin
with Evaluator do
begin

! Coans
Lons

AddConst

ants
{*Biv, P15
’/ Functions

AddFunc ('LogBasel0"',
AddFunc ('LogBase2’,
AddFunc ('LogBaseN"',

1
B procedure Init (Evaluator: TEasyEvaluator; FuncList: TStrings):;

LogBaselO) ;
LogBase2) ;
LogBaseN) ;

AddFunc('AxcCos’',
AddFunc('ArcCot',
AddFunc ('ArcCsc',
AddFunc ('ArcSec',
AddFunc('ArcSin’',
AddFunc('ArcTan',
AddFunc('ArcTan2',
AddFunc('Cos"',

Cos) ;

ArcCos);
ArcCot) ;
ArcCsc):
ArcSec) ;
ArcSin);
ArcTan) ;
ArcTan2) ;

Figure 7 — Registration of user-defined functions.

Also, the evaluator implements the ability to register variables (Fig. 8) and provides an interface

for their initialization.

Bprocedure TExprEvalForm.FormCreate (Sender: TObject):
Eegin
FEvaluator := TEwvaluator.Create:;
FEvaluator.hddVar ("x"', FX);
FEvaluator.ARddvVar('v"', FY);
FEvaluator.RAddVar('z', F2Z);
Init(FEvaluator, FuncList.Items);
| [erd;

Figure 8 — Registration of Evaluation variables.

Implementing the User Interface

An illustrative example of the user interface (Figure 9.), which allows you to enter arithmetic

expressions, and evaluate and display the

results can be found in the examples\common\expreval

folder of the JEDI library (JCL). An example of using the Calculator is shown in Figure 10.

W) JciExprEval Bxample — O ot
Yariables:] w = | |0 |

Expression: “2-+3]“4 | | Evaluate |
Functions: w

14

Figure 9 — Graphical user interface of the Calculator.

13

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

B function ResulthAsText (Evaluator: TEvaluator; const Input: string): string:
Eegin
try
Eesult := FloatToS5tr (Evaluator.Evaluate (Input)) ;
except
on E: Exception do
REesult := E.Message:
end;

end;

Figure 10 — An example of using the Evaluator.

Discussion of the results

One of the main requirements for engineering computing systems these days is, of course -
performance. It is worth noting that the performance of this calculator on the local Desktop system is
quite satisfactory and does not raise questions from the user. However, the implementation of such a
calculator as part of a multi-user system can cause performance problems [12]. Therefore, the
developer will have to think about the implementation of the system parallelism [13] and base further
development on its principles.

To improve calculation speed, we can consider applying the following approaches:

1. Reduce Expression Complexity: Complex expressions with many nested functions and
operators can lead to slower evaluation. We want to simplify expressions where possible to reduce
the number of operations.

2. Precompile Expressions: If we have expressions that are evaluated frequently, consider
precompiling them into a reusable format. This can save time on parsing and tokenizing the
expression each time it's evaluated.

3. Caching: If our calculations involve the same set of variables but different expressions, we
may consider caching the values of variables that don't change often. This can reduce the overhead
of variable lookup.

4. Reuse Instances: If we need to evaluate multiple expressions in the same context, we must
reuse the same instance of the expression evaluator rather than creating a new one for each evaluation.
Creating and initializing instances can be time-consuming.

5. Use Inline Variables: If possible, assign values to variables before evaluating the
expression. This can help simplify the expression and reduce the number of times variables are looked
up.

6. Optimize Your Expressions: Depending on the specific expressions we're evaluating,
there might be opportunities for optimization. For example, replacing expensive operations with
equivalent but faster operations.

7. Use Compiled Code: Some expression evaluation libraries allow us to compile
expressions into native machine code for faster execution. The JclExprEval or future developing
calculator based on such principles should support expression compilation.

8. Evaluate in Bulk: If we need to evaluate the same expression for multiple inputs, consider
batching the evaluations together. This can take advantage of any optimizations that the library has
for processing multiple inputs at once.

14

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —
T.8 Ne 8(34) c. 4-16

Considering the items above, the author of this article forked a new branch of the project called
unCalc (Universal Calculator) and the project is under development.
https://github.com/dima72/unCalc [14]

Conclusion. The advantages of using an arithmetic calculator as part of engineering calculation
systems are more than obvious. Firstly, a dynamically interpreted mathematical expression can
always be stored as a string, whether it is just a file or a database, as part of any program, and therefore
be available for editing by the user, which in turn greatly facilitates the support and development of
any software product. Now you do not need to recompile the entire project to fix an error in the
formula. Secondly, the implementation of the apparatus of the mathematical calculator is compact,
the reduction of the manual code for processing calculations, formulas always improving the quality
of the product, allows you to separate the apparatus of calculations from the formulas themselves.
Thirdly, knowledge of the construction of an arithmetic calculator helps to achieve a deeper
understanding of the development of interpreters, compilers, and universal software. Considering
current development trends in information technology, the language of the calculator implementation
is of secondary importance. This calculator can be implemented as part of frameworks and languages
that integrate with the cross-platform .NET framework, such as Oxygene and Hydra from
RemObjects [15] or on the TMS XData platform [16]. The novelty of this approach lies in the
provision of distributed engineering computing on the Cloud.

Cnmcok Jureparypbl
1. bubnuoreka koma JEDI pacnpoctpansiercs Ha ycnoBusax myonuuyHod nuneHsuun Mozilla
(MPL). /I https://github.com/project-jedi/jcl
2. Kouctpyxmms kommmsitopa Wikipedians // PediaPress 189c.
Hxon JleBun flex & bison: UuctpymenTs 115t o0padotku Tekcta / O'Reilly Media 2009, 84c.
4. One-Woxan Jane, Ducrep B. Jleiikcrpa, Yapmss A. P. Xoap CTpyKTypHpOBaHHOE
nporpammupoBanue // Acad. ITpecca 1980

w

5. Jxum Keor, [Ip»Buncon CTpyKTypbl JaHHBIX: MPUHLUIBI U (yHIAaMEHTaIbHbIE OCHOBBI //
Dreamtech Press 2004

6. bannukoB H.A. Kak nucats nepeBomuuki. // http://www.stikriz.narod.ru/art/Interp.htm (nara
nocemenus: 08/02/2023)

7. Kcassbe [1aueko, Ctus Teitmetipa PykoBoacTBo paspadotunka Borland Delphi 6 // Sams 2001

Mapxko Kantu ocBauBaet Borland Delphi // Wiley 2005, 913c.

9. TamnaBu Bumxkaii Yasan, Amum [[xagxas Teopus aBTOMaroB u (popmaibHBIC S3BIKH //
Elsevier Science 2023 112c.

10. Xannec Xanke, Koyn XoBapna, Xo6con Jleitn O6paboTka ecTeCTBEHHOTO si3bIKa B JieiicTBUH //
Mbsuuunr 2019

11. Many»snbs PyOno-Canuec Beenenue B pekypcuBHbIii Pr.

12. Bjorn Andrist, Viktor Sehr C++ High Performance Boost and Optimize the Performance of
Your C++17 Code // Packt Publishing, 2018

13. Dan C. Marinescu Cloud Computing: Theory and Practice // Elsevier Science 2022

14. Dmitry Konnov unCalc // https://github.com/dima72/unCalc (date of visit: 08/14/2023)

15. RemObjects Software // https://www.remobjects.com (date of visit: 08/02/2023)

©o

15

https://github.com/dima72/unCalc
https://github.com/dima72/unCalc
https://www.remobjects.com/

Konnos /I.B. Peanuzanus apupmerndeckoro kanskyistopa Ha sizeike OBJECT PASCAL //

MexayHapoaHbIN)XypHaAT HHHOPMAITMOHHBIX TEXHOJOTUH 1 dHeprodddextuBHocTH. — 2023. —

T.8 Ne 8(34) c. 4-16

16.

Delphi framework for multi-tier REST/JSON HTTP/HTTPS application server development
and ORM remoting. // https://www.tmssoftware.com/site/xdata.asp (date of visit: 08/02/2023)

References

1.

w

10.

11.
12.

13.
14.
15.
16.

The JEDI Code Library is distributed under the terms of the Mozilla Public License (MPL). //
https://github.com/project-jedi/jcl

By Wikipedians Compiler Construction // PediaPress p.189

John Levine flex & bison: Text Processing Tools // O'Reilly Media 2009, p. 84

Ole-Johan Dahl, Edsger W. Dijkstra, Charles A. R. Hoare Structured programming // Acad.
Press 1980

Jim Keogh, Davidson Data Structures: Principles and Fundamentals // Dreamtech Press 2004
Bannikov N.A. How to write interpreters. // http://www.stikriz.narod.ru/art/Interp.htm (date of
visit: 08/02/2023)

Xavier Pacheco, Steve Teixeira Borland Delphi 6 Developer's Guide // Sams 2001

Marco Canty Mastering Borland Delphi // Wiley 2005 p.913

Pallavi Vijay Chavan, Ashish Jadhav Automata Theory and Formal Languages // Elsevier
Science 2023 p.112

Hannes Hapke, Cole Howard, Hobson Lane Natural Language Processing in Action // Manning
2019

Manuel Rubio-Sanchez Introduction to Recursive Programming // CRC Press 2017

Bjorn Andrist, Viktor Sehr C++ High Performance Boost and Optimize the Performance of
Your C++17 Code // Packt Publishing, 2018

Dan C. Marinescu Cloud Computing: Theory and Practice // Elsevier Science 2022

Dmitry Konnov unCalc // https://github.com/dima72/unCalc (date of visit: 08/14/2023)
RemObjects Software // https://www.remobjects.com (date of visit: 08/02/2023)

Delphi framework for multi-tier REST/JSON HTTP/HTTPS application server development
and ORM remoting. // https://www.tmssoftware.com/site/xdata.asp (date of visit: 08/02/2023)

16

https://www.tmssoftware.com/site/xdata.asp
https://github.com/project-jedi/jcl
http://www.stikriz.narod.ru/art/Interp.htm
https://github.com/dima72/unCalc
https://www.remobjects.com/
https://www.tmssoftware.com/site/xdata.asp

