Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. – 2023. – Т. 8 N 5(31)ч.2 с. 39–47

Международный журнал информационных технологий и энергоэффективности

Сайт журнала:

http://www.openaccessscience.ru/index.php/ijcse/

УДК 004.02

ПОСТРОЕНИЕ МАТРИЧНОЙ МОДЕЛИ ДЛЯ АНАЛИЗА НЕПРЕРЫВНО ДИСКРЕТНЫХ СИСТЕМ

Киселев Н.С.

ФГБОУ ВО " Казанский Государственный Энергетический Университет", Казань Россия (420066, Республика Татарстан, город Казань, Красносельская ул, д. 51), e-mail: kis_48@mail.ru

Рассмотрен метод построения модели для анализа непрерывных и дискретных процессов на примере логических и электронных схем. Предложен метод построения объединенной непрерывно-дискретной модели на основе матрицы смежности.

Ключевые слова: Модель непрерывно дискретных систем, матрицы смежности, матрицы инцидентности.

CONSTRUCTION OF A MATRIX MODEL FOR THE ANALYSIS OF CONTINUOUSLY DISCRETE SYSTEMS

Kiselev N.S.

Kazan State Power Engineering University, Kazan, Russia (420066, Republik of Tatarstan, Kazan city, Krasnoselskaya street, 51), e-mail: kis_48@mail.ru

The method of constructing a model for the analysis of continuous and discrete processes on the example of logic and electronic circuits is considered. A method for constructing a combined continuous-discrete model based on the adjacency matrix is proposed.

Keywords: Model of continuously discrete systems, adjacency matrices, incidence matrices.

Многие современные технические системы представляют из себя совокупность устройств с непрерывными и дискретными технологическими процессами. К непрерывным, например, относятся электрические, химические, тепловые, гидродинамические, диффузионные и ряд других. Дискретные процессы реализуют, как правило, системы управления, ручного или автоматического.

Большую часть в этих системах составляют системы, связанные с передачей и преобразованием различного рода потоков - информационные, энергетические, потоки жидкостей и газов и др.

Для анализа таких систем на разных уровнях детализации в качестве моделей используют разнообразный математический аппарат: численные методы решения дифференциальных уравнений, алгебру логики, теорию графов, сети Петри, теорию массового обслуживания и др., с хорошо разработанными методами решения [1, 2, 3].

Разнообразие методов и моделей создает определенные трудности:

- для более полного анализа требуемой задачи необходимо построение нескольких моделей для разных уровней детализации поставленной задачи
- повышаются профессиональные требования к специалистам, поскольку они должны: владеть большим разнообразием методов моделирования на разных уровнях, уметь сопрягать модели разных уровней и интерпретировать результаты их моделирования.

В работе предлагается объединить непрерывные и дискретные модели в рамках единого матричного подхода к построению единой модели.

Рассмотрим построение гибридной модели на примере схемы содержащей электрические (аналоговые) и логические (дискретные) элементы.

Для логических схем в качестве модели удобно использовать матричную модель вида [4]

$$S_o = M \Theta S_i \tag{1}$$

или

$$\begin{vmatrix} s_{o1} \\ s_{o2} \\ ... \\ s_{on} \end{vmatrix} = \begin{vmatrix} m_{11} & m_{21} & ... & m_{n1} \\ m_{12} & m_{22} & ... & m_{n2} \\ ... & ... & ... & ... \\ m_{1n} & m_{2n} & ... & m_{nn} \end{vmatrix} \begin{vmatrix} \bigcirc_1 \\ \bigcirc_2 \\ ... \\ \bigcirc_n \end{vmatrix} \begin{vmatrix} s_{i1} \\ s_{i2} \\ ... \\ s_{in} \end{vmatrix}$$

$$(2)$$

Пусть задана логическая схема и ее граф (Рисунок 1).

Вершинам графа соответствуют элементы схемы, включая входы и выходы, а ребрам – связи между элементами. Направление ребер соответствует направлению передачи сигналов (потоков информации).

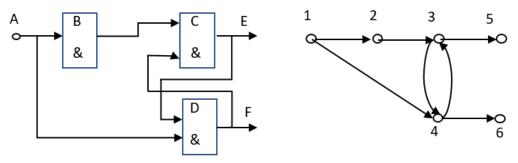


Рисунок 1 – Схема и ее граф

Для графа и схемы построим матрицу смежности и вектор функций элементов (Рисунок 2).

Каждая строка матрицы определяет входы в элемент (например: в элемент – B, вершина графа 2 входом является элемент A, вершина графа 1). Функция элемента $\neg \& (\textbf{\textit{И-HE}})$. Задав начальное значение на входе схемы, можно вычислить значение на элементе B (строка матрицы 2). Пробегая все строки можно определить состояние всех элементов в некоторый начальный момент времени. Данный алгоритм описывается выражениями 1 и 2.

							_
№ п/п	1	2	3	4	5	6	
п/п							
1							
2	1						
3		1		1			
4	1		1				
5			1				
6				1			

Функция
элементов
схемы
вход
¬&
¬&
¬&
выход
выход

Рисунок 2 – Матрица смежности с функциями элементов схемы

При построении математической модели электрических схем также используется граф схемы. При этом вершинам графа соответствуют цепи, а ребрам компоненты (двухполюсные).

Рассмотрим построение матрицы смежности для аналоговой схемы. В качестве примера возьмем рисунки из [5] (Рисунок 3).

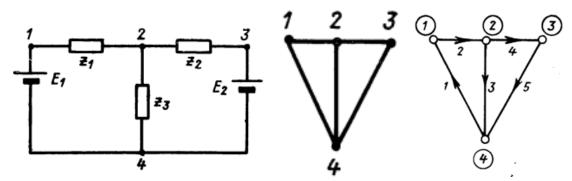


Рисунок 3 – Схема, её граф и ориентированный граф

На основе ориентированного графа можно построить матрицу инциденций (соединений), представленную на Рисунке 4. Матрица показывает соединение узлов и ветвей ориентированного графа. В каждом столбце единицами отмечены в строках, соответствующих узлам, начала (-1) и концы ветвей (1).

	Ветви													
Узлы	1	2	3	4	5									
1	1	-1												
2		1	-1	-1										
3				1	-1									
4	-1		1		1									

Рисунок 4 – Матрица инциденций (матрица соединений)

Известно, что данную матрицу можно использовать для записи законов Кирхгофа. Обозначив матрицу буквой A выражение закона Кирхгофа для токов (ЗКТ) запишется в виде AI=0, а для закона Кирхгофа для напряжений $A^tU=0$, где t – знак транспонирования.

Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. – 2023. — Т. 8 N 5(31) ч. 2 c. 39—47

Матрица смежности для этой же схемы представлена на Рисунке 5. имеет блочный вид. Два блока выделены жирными линиями. Обозначим блоки матрицы символами \boldsymbol{B} для правого верхнего и \boldsymbol{C} для левого нижнего.

	1	2	3	4	1	2	3	4	5
1)			1				
2						1			
3								1	
4							1		1
1				1					
2	1								
3		1							
4		1							
5			1			·			

Рисунок 5 – Матрица смежности

Сопоставляя эти две матрицы можно заметить, что первая матрица A получается из второй, если у неё взять левый нижний блок, умножить на (-1) и транспонировать, а затем сложить с правым верхним блоком. Также можно получить транспонированную матрицу A^t . Для этого левый нижний блок надо умножить на (-1), и сложить с транспонированной правым верхним блоком.

Или
$$\mathbf{A} = \mathbf{B} + \mathbf{C}^{t} * (-1)$$
 (3)

$$\mathbf{H}A^t = (-1) * C + B^t \tag{4}$$

Полученная модифицированная матрица представлена на Рисунке 6.

	1	2	③	4	1	2	3	4	5
1					1	-1			
2						1	-1	-1	
3								1	-1
4					-1		1		1
1	1			-1					
2	-1	1							
3	_	-1		1					
4		-1	1						
5			-1	1		·			

Рисунок 6 – Структурная матрица для ЗК

Уравнения законов Кирхгофа на основе полученной матрицы можно записать следующим образом

$$\begin{bmatrix} \mathbf{0} & A \\ A^t & \mathbf{0} \end{bmatrix} * \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \tag{5}$$

Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. – 2023. – Т. 8 N 5(31)ч.2 с. 39–47

Для получения полной системы уравнений необходимо добавить компонентные уравнения для токов и напряжений [6].

Построить полную систему уравнений из исходной модели в матричном виде можно, если в граф на Рисунке 3 добавить дополнительные вершины (Рисунок 7.).

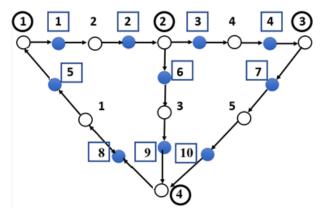


Рисунок 7 – Граф с дополнительными вершинами.

Дополнительные вершины выделены цветом и отмечены номерами в квадратиках. Матрица смежности для данного графа представлена на Рисунке 8.

В полученной матрице невозможно увидеть блоки как-то сходные с блоками матрицы на Рисунке 5. Однако при перестановке строк и одноименных столбцов можно получить матрицу, представленную на Рисунке 9.,

Очевидно, что в новой матрице есть два блока таких же, как и на Рисунке 5, и два единичных блока.

Перестановка строк и одноименных столбцов равносильна перенумерации вершин графа. Дополнительная нумерация на Рисунке 9 соответствует графу на Рисунке 10.

Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. – 2023. – Т. 8 N 5(31)ч.2 с. 39–47

	\bigcirc	(2)	(3)	4	1	2	3	4	5	1	2	3	4	5	6	7	8	9	10
1														1					
0 0 4											1								
3													1						
4																		1	1
1																	1		
2										1									
3															1				
4												1							
5																1			
1	1																		
2						1													
3		1																	
4								1											
5					1														
6		1																	
7			1																
8				1															
9							1												
10									1										

Рисунок 8 – Матрица смежности для графа с дополнительными вершинами

											1	2	3	4	5	6	7	8	9	10
		\bigcirc	2	3	4	1	2	3	4	5	5	2	9	4	10	8	1	6	3	7
	വ	۲	ت	٣	•						1				10	-				
	ð										_	1								
	$\Theta\Theta\Theta\Theta$											_		1						
	(4)												1		1					
	1															1				
	2																1			
	3																	1		
	4																		1	
Щ	5																			1
1	5					1														
2	2						1													
3	9							1												
4	4								1											
5	10									1										
6	8				1															
7	1	1																		
8	6		1																	
9	3		1																	
10	7			1																

Рисунок 9 – Матрица с переставленными строками и столбцами

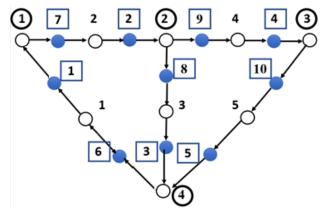


Рисунок 10 – Граф с перенумерованными вершинами

В символьном виде матрицу на Рисунке 7 можно представить следующим образом:

$$\begin{bmatrix} 0 & 0 & B & 0 \\ 0 & 0 & 0 & I \\ 0 & I & 0 & 0 \\ C & 0 & 0 & 0 \end{bmatrix}$$
A с учетом преобразований 3 и 4.
$$\begin{bmatrix} 0 & 0 & A & 0 \\ 0 & 0 & 0 & I \end{bmatrix}$$

0 0

0 0

(7)

Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. – 2023. – Т. 8 N 5(31)ч.2 с. 39–47

Выражение (7) является основой для системы уравнений для токов, напряжений и компонентных уравнений.

В результате полученных рассуждений видно, что системы уравнений электрических схем можно получить не только из матриц инциденций, но и из матриц смежности. При этом получаются как топологические, так и компонентные уравнения. Таким образом, использование матриц смежности, как для логических, так и электрических схем, с методологической точки зрения упрощает алгоритм построения разнородных моделей.

Список литературы

- 1. Парийская Е.Ю., Сравнительный анализ математических моделей и подходов к моделированию и анализу непрерывно–дискретных систем. Дифференциальные уравнения и процессы управления, №1, 1997, Электронный журнал, с.91-120
- 2. Якимов И.М., Кирпичников А.П., Мокшин В.В. Моделирование сложных систем в среде имитационного моделирования GPSS W с расширенным редактором. Вестник казанского технологического университета, Том: 17, №: 4 2014, с.: 298-303
- 3. Киселев Н.С. Матричный метод моделирования непрерывно-дискретных схем //Информатика 87. 2 Всесоюзная конференция. Ереван: Арм.ССР,1987.- с.251
- 4. Киселев Н.С. Матричная модель для анализа логических схем большой размерности//Исследования по информатике. Выпуск 1. Научно-практическое издание. Институт проблем информатики АН РТ. Сборник трудов. Казань: Отечество, 1999, с.95-100
- 5. Ильин В.И. Машинное проектирование электронных схем. М.: Энергия, 1972
- 6. Шиманская-Семенова, Т.А. Применение матричных моделей для расчета и анализа режимов электрических сетей: методическое пособие по выполнению курсовой работы и изучению дисциплины «Математические модели в энергетике» для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» / Т.А. Шиманская-Семёнова. Минск: БНТУ, 2010. 158 с.

References

- 1. Pariyskaya E.Yu., Comparative analysis of mathematical models and approaches to modeling and analysis of continuous—discrete systems. Differential Equations and Control Processes, No. 1, 1997, Electronic Journal, pp.91-120
- 2. Yakimov I.M., Kirpichnikov A.P., Mokshin V.V. Modeling of complex systems in the GPSS W simulation environment with an extended editor. Bulletin of Kazan Technological University, Volume: 17, no.: 4 2014, pp.: 298-303
- 3. Kiselev N.S. Matrix method of modeling continuous-discrete circuits //Informatics 87. 2 All-Union Conference. Yerevan: Arm.SSR, 1987.- p.251
- 4. Kiselev N.S. Matrix model for the analysis of large-dimensional logic circuits//Computer science research. Issue 1. Scientific and practical edition. Institute of Computer Science Problems of the Academy of Sciences of the Republic of Tatarstan. Collection of works. Kazan: Fatherland, 1999, pp.95-100
- 5. Ilyin V.I. Machine design of electronic circuits. M.: Energiya, 1972
- 6. Shimanskaya-Semenova, T.A. Application of matrix models for calculation and analysis of modes of electric networks: a methodological guide for the course work and the study of the

Киселев Н.С. Построение матричной модели для анализа непрерывно дискретных систем // Международный журнал информационных технологий и энергоэффективности. — 2023. — Т. 8 N 5(31)ч.2 с. 39–47

discipline "Mathematical models in power engineering" for students of specialty 1-43 01 02 "Electric power systems and networks" / T.A. Shimanskaya-Semenova. – Minsk: BNTU, 2010. – p.158