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ГРАНИЦЫ СВЯЗИ В НЕПРЕРЫВНОМ ГАУССОВСКОМ КАНАЛЕ 
 

Кузнецов В.C. 

ФГАОУ ВО "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МОСКОВСКИЙ 

ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ", Москва, Россия, (124498, город Москва, город 

Зеленоград, пл. Шокина, д. 1), e-mail: vistep2000@yahoo.com 

В статье доказано, что синхронный ортогональный код при высокой достоверности приёма в 

непрерывном гауссовском канале и скорости передачи информации, равной пропускной способности 

канала асимптотически обеспечивает предельно минимальное требуемое отношение Eb/N0 в этом канале. 

Сложность декодирования определяется предельно разреженной генераторной матрицей этого кода. 

Ключевые слова: Непрерывный гауссовский канал с АБГШ, коды ППСУ, синхронный ортогональный код, 

частотная эффективность, разделимость сигналов. 
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The article proves that synchronous orthogonal code at high receiving reliability in a continuous Gaussian channel 

and information transmission rate , equal to the channel capacity  asymptotically provides limiting minimum 

needful ratio Eb/No in this channel. The complexity of decoding is determined by the extremely sparse generator 

matrix of this code. 

Keywords: Continuous Gaussian channel with AWGN, the densest surface – spherical packing (DSSP) codes,  

synchronous orthogonal code,  frequency efficiency; signal separability. 

 

Введение 

   Целью статьи является рассмотрение принципов построения системы передачи 

информации на основе синхронного ортогонального кода (ОК), являющегося на сегодняшний 

день лучшим кодом плотнейшей поверхностно – сферической упаковки (ППСУ).  Сложность 

декодирования этого ОК определяется матрицей Адамара, или диагональной матрицей, 

обладающими уникальным свойством предельного разрежения  вплоть до двух , или  до 

одного  ненулевого элемента  в  каждой строке  генераторной  матрицы  при любой длине 

существования  ОК.  

Зададим два основных параметра качества передачи и приёма цифрового сообщения: 

блоковую вероятность ошибки  Qerr. и  скорость  передачи  R.  

       𝑅 =
𝑘

𝑇
=

𝑘

𝑛𝜏𝑐ℎ
=

𝑟𝑐

𝜏𝑐ℎ

бит

с
 ,   где 

c

k
r

n
= − относительная скорость передачи помехоустойчивого кода (ПК) .   
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      Оценим требуемое  число отсчётов.  

       𝑛 =
𝑇

𝛥𝑡
≥ 2𝐹𝑇,    где  𝐹 − выходная полоса канала, 

  равная  максимальной частоте  спектра  передаваемого  сообщения;   

 где  l -  коэффициент согласования с каналом по скорости передачи.   

      T = n ch − время  наблюдения, .ch − длительность тактового импульса.   

     Частотная эффективность системы   𝛾сист. =
𝑅

𝐹
= 𝑟𝑐 ⋅ 𝑙  не может превышать частотную 

эффективность канала,  т.е.  выбираем    𝛾сист. = .кан  При этом         выполняется предельное 

равенство  R = C,  где С - пропускная способность непрерывного канала  с АБГШ,     C = F

2log (1 )cP

N
 +  =  F ⋅ .кан .   

  Определим коэффициент согласования l. Т. к. 𝛾сист. = 𝑟𝑐 ⋅ 𝑙 = 𝛾кан. , то                 l =
𝛾кан.

𝑟𝑐
;               

тогда    F = 
. ..

.c

кан канкан ch

r R C

   
= =


                                               ( 1 ) 

   К сожалению, ошибка  Д. Слепяна по выбору частотной эффективности  

( 𝛾 =
2⋅log2𝑀

𝑛
= 2 ⋅ rc ,  выр.(8)  в   [ 1 ] )  по форме сигнала , а не по  условию  согласования  

с каналом  по  скорости передачи информации  надолго затормозила  развитие теории связи 

и передачи данных  в гауссовском канале (спутниковые и космические каналы ближнего и 

дальнего космоса).     С учётом выражения  ( 1 )       

0 0 0 .
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                                        ( 2 )  

   Система, определяемая выражением ( 1 ), является широкополосной.  

   Основной смысл теоремы  К.Э. Шэннона для непрерывного гауссовского канала  [ 2  ] 

заключается в том,  что  “ применяя достаточно сложную систему кодирования,  можно 

передавать двоичные цифры со скоростью      R = C,   со сколь угодно малой частотой ошибок 

“.   Выбранную систему кодирования назовём оптимальной, если указанные результаты  

достигаются  при 

асимптотическом  приближении  требуемого  отношения  
0

bE

N
  к  ln2.                                       

  При  выборе оптимального ПК с предельно высокой помехоустойчивостью 

(dх   n/2)  требуемое отношение   0 <
𝑃𝑐

𝑁
= 𝛼 ≪ 1 ( при заданной  блоковой вероятности ошибки  

Qerr.), что определяет величину ln ( 1+ 
𝑃𝑐

𝑁
) ≈

𝑃𝑐

𝑁
.   В этом  случае  при 𝐹 → ∞ lim

𝐸𝑏

  𝑁0  
 = ln2,  что 

является решением проблемы                                     К.Э. Шеннона  [ 2  ]  по  энергетике  для  

непрерывного  канала  с  АБГШ.    

  Таким образом, ПК с высокой относительной избыточностью 
1

cr
 =  должен обладать 

и предельно высокой  помехоустойчивостью (ПУ)  при выборе .  

1
,

ch

F
l 

=

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 К.Э.Шэннон при доказательстве своей теоремы выбрал ансамбль белого ( в ограниченной 

полосе частот) гауссовского шума с выбором  М функций сигнала наудачу из числа всех точек 

внутри сферы радиуса .cnP  

 На практике указанным выше требованиям удовлетворяют  коды  плотнейшей 

поверхностно – сферической упаковки ( коды ППСУ). Это известные симплексные коды, 

биортогональные коды а также  ортогональные коды (ОК) , близкие к кодам ППСУ  при  

длинне  блока  n>>1.  К тому же,  ОК обладают замечательным свойством разделимости  при 

одновременной и синхронной передаче всех комбинаций ОК ( при строго нулевом взаимном 

сдвиге по задержке). Это позволяет увеличить скорость передачи R и АЭВК синхронного ОК 

в 
2log

n

M
  раз  по  сравнению  с передачей только одной кодовой комбинации ОК в каждом 

сеансе связи. Большим достоинством кодов ППСУ является то, что вероятность блоковой 

ошибки декодирования 5

. 10errQ −  обеспечивается выбором  их  длины не более  2048  

символов. 

  Остановимся на выборе квадратной генераторной матрицы, задающей синхронный ОК, 

и оценим сложность  декодера и процедуры декодирования этого кода.  

  а)    H2 =  1  1             б)    H4 =  1  1  1  1        в)     H8 =1  0  0  0  1  0  0  0 

                  1 -1.    11111 1           1 -1  1 -1                        1  0  0  0 -1  0  0  0                                                                                                                                                                                                       

.                                                     1  1 -1 -1                       0  1   0  0  0  1  0  0                                                                                                              

.                                                     1 -1 -1  1.                      0  1   0  0  0 -1  0  0 

.                   0  0  1   0  0  0  1  0 

.                                                                                           0  0  1  0  0   0 -1  0 

                                                                                            0  0  0  1  0   0  0  1 

                    0  0  0  1  0   0  0 -1. 

 

         г)    H4 = cnP    0      0     0                д) H4 = n   0     0   0 

                          0   cnP     0     0                                0  n   0   0   

                          0      0   cnP    0                                0   0  n   0 

                          0      0      0  cnP .                             0   0   0  n .                                                                                       

 

Рисунок 1- Матрицы ортогональных кодов: 

а)  и  б) - задающие  двоичные матрицы Адамара,  nОК = 2 и 4; 

в) - разреженная матрица Адамара, nОК = 8; 

г) - задающая диагональная матрица  ОК,  nОК = 4. 

д) - приёмная диагональная матрица ОК, nОК = 4. 

  Сравнение основных параметров генераторных матриц синхронных ОК приводится в 

Таблице 1.  
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Таблица 1 - Генераторные матрицы, задающие синхронный ОК 

Параметры Двоичная 

матрица  

Адамара 

       

Разреженная  матрица 

 Адамара 

Диагональная матрица        .              

ОК 

Сложность 

декодера  z  эл. 
        

2n  

 
      2 n               1 n  

Число  опера – 

ций  декодир. Z 
        

2n           21 n log n   
                 n 

Скорость  пе -

редачи  R бит/с  
𝑛 2

𝑛 ок ⋅𝜏𝑐ℎ

=
1

сh
 

   
1

log2𝑛⋅𝜏перекл.
 

       
1

ch
,   𝜏перекл. = ch  

 

При выигрыше по числу операций  в 
2log

n

n
 раз по сравнению с двоичной матрицей 

Адамара  недостатком выбора  разреженнной  матрицы  Адамара является снижение скорости 

передачи информации в  log2 n  раз.   В то же время,  

диагональная  матрица  ОК  задаёт минимальное  число  операций  декодирова  -ния,  равное  

nОК  и  выполняемых  за  одну  итерацию .  

Таким образом, выбор кодов ППСУ , и в частности,  синхронных ОК с корреляционным  

методом  декодированием  в непрерывном  гауссовском канале  позволяет  решить  проблемы  

К.Э.Шеннона   по  помехоустойчивости и энергетике  [ 2, 3 ] , а выбор разреженных  

генераторных  матриц  ОК позволяет  существенно  сократить  сложность  декодера  и  число  

операций  при  декодировании.     

В качестве примера приведём расчёт основных параметров синхронного ОК 2048 [4].   

Таблица 2 - Основные параметры синхронного ОК 2048 

Параметры 

      ПК      bitq       cP

N
  

max R 

Mбит/c 
   .кан  

бит/(с Гц) 

 

0

bitE

N
 дБ 

     

     F   

  МГц    

nОК=2048, 

M=2048, 

k=M, rC=1, 

dX =1024. 

10-3 0,0234  

 228,0 

0,0334 -1,541 6826,0 

10-5 0,0321 0,0456 -1,523 5000,0 

10-7 0,0409 0,0578 -1,504 3945,0 

 

Полученные результаты выбора, расчёта и практического применения кодов ППСУ 

делают не нужным применение других типов кодов (таких, как свёрточные коды, коды Рида – 

Соломона и, тем более, кодов  LDPC  и  др.)  в рассматриваемом канале.                                
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