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В статье рассматривается метод прогнозирования объёмного расхода нефти с использованием методов 

машинного обучения. Актуальность исследования обусловлена потребностью в точном и быстром 

предсказании расхода нефти по параметрам эксплуатации. Предложен подход, использующий 

градиентный бустинг решающих деревьев с инженерными и статистическими методами улучшения 

качества модели. Оценка проводилась с применением кросс-валидации. Метрикой качества служила 

средняя абсолютная погрешность. 
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The work considers a method for forecasting the volumetric flow rate of oil based on machine learning techniques. 
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Точное прогнозирование объёмного расхода нефти по параметрам технологического 

процесса позволяет оптимизировать режимы работы скважин, планировать объём добычи и 

предотвращать аварийные ситуации.  

В настоящее время для оценки расхода нефти широко применяются аналитические 

формулы и численные гидродинамические модели [1].  

К классическим подходам относятся расчёты на основе законов гидравлики и 

эмпирические корреляции, основанные на законе Дарси и других физических принципах [2].  

Однако такие методы требуют тщательного подбора коэффициентов под конкретные 

условия и могут давать существенные погрешности при изменении режимов работы 

оборудования. Кроме того, высокоточные численные модели, например, системы 

http://www.openaccessscience.ru/index.php/ijcse/
mailto:rehino@permlink.ru
mailto:rehino@permlink.ru


Мищенко И.А., Рубцов Ю.Ф. Прогнозирование объёмного расхода нефти с помощью модели 

градиентного бустинга // Международный журнал информационных технологий и 

энергоэффективности. – 2025. – Т. 10 № 12(62) с. 91–98  

 

93 

дифференциальных уравнений, решаемые методом конечных элементов или объёмов 

затратны по времени, и требуют полного набора входных данных, которые не всегда доступны 

[3]. 

Для преодоления указанных ограничений было принято решение воспользоваться 

методами машинного обучения.  

Машинное обучение позволяет строить модели напрямую по экспериментальным или 

производственным данным, минуя необходимость явного задания физико-математической 

модели процесса.  

Алгоритмы ансамблевого обучения, такие как градиентный бустинг деревьев решений, 

зарекомендовали себя как эффективный инструмент прогнозирования [4].  

В отличие от известных подходов, где применяются либо упрощённые эмпирические 

формулы, либо универсальные модели общего назначения, в работе делается акцент на 

комбинировании мощного алгоритма бустинга со специальными методами предобработки и 

калибровки, учитывающими особенности данных (например, различия в диаметрах 

оборудования).  

Исследование включает в себя:  

• сбор и подготовку данных измерений расхода нефти и параметров процесса; 

• построение модели HistGradientBoostingRegressor с оптимизированными 

параметрами;  

• внедрение логарифмического преобразования целевой переменной и 

масштабирования признаков;  

• введение дополнительных признаков для учёта динамики;  

• оценку точности модели методом кросс-валидации;  

• анализ влияния каждого из основных факторов на результат и сравнение с 

существующими подходами. 

Для исследования использованы данные замеров объёмного расхода нефти и 

сопутствующих параметров процесса, полученных на сертифицированном и поверенном 

расходомере типа «Кориолис» и двух сертифицированных и поверенных датчиках давления. 

Набор данных для обучения модели включает ~166 тысяч наблюдений, снятых в 

различных режимах.  

Целевой переменной является объёмный расход нефти (м³/сут).  

Значения объёмного расхода варьируются от 1 до 350 м³/сут, то есть охватывают 

широкий диапазон – от крайне малых до относительно высоких расходов. В качестве базовых 

признаков в модель включены переменные, приведённые в Таблице 1. 

Таблица 1 - Базовые признаки модели 

Параметр Обозначение Единицы Смысл 

Перепад давления ΔP МПа Разность давления до и после штуцера 

Плотность жидкости ρ г/см³ Физическое свойство жидкости 

Диаметр штуцера d мм Геометрический параметр канала 

Температура T °C Влияет на вязкость и плотность 

Целевая переменная Q м³/сут Объёмный расход нефти 
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Для улучшения качества модели применены инженерные и статистические 

преобразования, отражающие физическую природу течения жидкости: 

В формуле (1) отражен дополнительный признак, скоростная зависимость: 

√∆𝑃 (1) 

В формуле (2) отражен дополнительный признак, гидродинамическая функция давления: 

√
∆𝑃

𝜌
 (2) 

В формуле (3) отражен дополнительный признак, площадь сечения канала: 

𝑑2 (3) 

В формуле (4) отражен дополнительный признак, физический прототип формулы 

расхода: 

𝑑2√
∆𝑃

𝜌
 (4) 

В формуле (5) отражен дополнительный признак, инверсия плотности: 

1

√𝜌
 (5) 

Эти признаки выполняют функции формулы Торричелли (6): 

𝑄 ∝ 𝑑2√
∆𝑃

𝜌
 (6) 

Плотность и давление по своему диапазону находились в ограниченных пределах, 

поэтому для сглаживания распределения без дополнительной нормализации достаточно было 

логарифмического преобразования по формуле (7):  

log(1 + ∆𝑃),  

log(1 + 𝑑), 

log(1 + 𝜌) 

(7) 

Так стабилизируется масштаб и зависимость становится более линейной для бустинга. 

В частности, целевая переменная Q также заменена на log(Q), при обучении модели. 

Переход к логарифму расхода позволил уменьшить влияние асимметричного распределения 

Q и сделать задачу более удобной для регрессии. 

Температура вместо перехода в логарифмическое пространство была нормализована по 

формуле (8): 

T𝑧 =
𝑇 − 𝜇𝑇

𝜎𝑇
  (8) 

, где 𝜇𝑇 и 𝜎𝑇  — среднее и стандартное отклонение в обучающем фолде. 

В итоге модель использует 13 признаков, объединяющих физические и статистические 

описания входных данных. 

Перед обучением модели проведена очистка данных. Удалены некорректные записи, в 

частности отрицательные значения расхода и других параметров. Также из набора исключены 

явные выбросы, не соответствующие физически возможным режимам, например, случаи 

нулевого или экстремально большого перепада давления при значительном расходе.  
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В качестве алгоритма прогнозирования выбран градиентный бустинг решающих 

деревьев, а именно HistGradientBoostingRegressor из библиотеки scikit-learn [5].  

Данный алгоритм строит ансамбль из M неглубоких деревьев решений (9), каждое 

последующее дерево обучается на ошибках предыдущих, таким образом постепенно 

уменьшая ошибку ансамбля.  

𝑦̂ = ∑ η ∗ hm(𝑥)

𝑀

𝑚=1

  (9) 

В формуле (9): 

hm(𝑥) – это m-ное дерево, аппроксимирующее отрицательный градиент ошибки на 

предыдущем шаге, 

η – это шаг при обучении, 

М – число итераций бустинга. 

Особенностью HistGradientBoosting (HGB) является эффективный алгоритм бустинга на 

основе гистограмм, что ускоряет обучение на больших выборках за счёт биннинга 

непрерывных признаков [6].  

Для нашей задачи HGBRegressor был настроен с использованием функции потерь на 

основе абсолютной погрешности (10) (mean absolute error, MAE).  

L(y, 𝑦̂) =
1

𝑛
∑(yi − 𝑦𝑖̂)

𝑛

𝑖=1

  (10) 

Выбор MAE (вместо стандартной квадратичной ошибки) продиктован тем, что 

абсолютная погрешность менее чувствительна к выбросам и даёт более устойчивые 

медианные оценки, что важно при наличии редких аномально высоких или низких значений 

расхода [7].  

Для оценки качества применялась 5-кратная перекрёстная проверка (11): 

𝐷 = ⋃(𝐷𝑡𝑟𝑎𝑖𝑛
𝑘 , 𝐷𝑣𝑎𝑙

𝑘 )

5

𝑘=1

  (11) 

Метрики усреднялись по всем фолдам. Использовались следующие показатели: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦̂| (12) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦 − 𝑦̂|

|𝑦|
 (13) 

𝑆𝑀𝐴𝑃𝐸 =
200

𝑛
∑

|𝑦 − 𝑦̂|

|𝑦| + |𝑦̂|
 (14) 

𝑅2 = 1 −
∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̂)2
 (15) 

Для оценки равномерности погрешности также вычисляется доля прогнозов в допуске 

±5% и ±10%. 

При обучении модели была использована схема взвешивания наблюдений по 

относительной погрешности, чтобы обеспечить равную значимость относительных 

отклонений [8].  
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Для малых по величине расходов даже небольшое абсолютное отклонение может быть 

критичным в процентном отношении, тогда как для больших расходов такая же абсолютная 

погрешность может составлять доли процента.  

Важно отметить, что для предотвращения переобучения и обеспечения физической 

осмысленности результатов рассматривалась возможность введения монотонных 

ограничений [9]. Однако в конечном итоге было принято не вводить монотонные ограничения, 

поскольку данные содержат сложные взаимосвязи. 

После первоначального обучения была проведена дополнительная калибровка 

прогнозов, призванная устранить систематические смещения в зависимости от диаметра 

штуцера.  

Анализ разностей между прогнозом модели и фактическим значением показал, что даже 

при общем небольшом уровне погрешности модель имеет тенденцию к небольшому 

недопредсказанию или перепредсказанию расхода для определённых диаметров.  

Чтобы учесть эту особенность, была применена постобучающая калибровка по диаметру 

двумя методами: линейной регрессией (16) и изотонической регрессией (17), [10]. 

𝑄′ = 𝑎𝑑 + 𝑏𝑑𝑄̂  (16) 

где 𝑎𝑑 и 𝑏𝑑 подбираются методом наименьших квадратов по каждому диаметру. 

𝑄′′ = 𝐼𝑠𝑜𝑑(𝑄′)  (17) 

где 𝐼𝑠𝑜𝑑 монотонная аппроксимация зависимости истинного расхода от предсказанного 

для данного диаметра. 

Обе схемы калибровки сравнивались между собой.  

Изотоническая калибровка лучше устраняет смещения: средняя погрешность после неё 

оказалась ниже, особенно на краях диапазона.  

Линейная калибровка также улучшила точность по сравнению с некалиброванной 

моделью, но недостаточно корректировала нелинейные эффекты.  

Таблица 2 - Результаты кросс-валидации 

Метрика Значение 

RMSE 1.995 

MAE 1.223 

R² 0.899629 

MAPE 2.260% 

SMAPE 2.158% 

WMAPE 1.121% 

Покрытие ±5% 91.87% 

Покрытие ±10% 96.81% 

 

После обучения и кросс-валидации модель градиентного бустинга продемонстрировала 

высокое качество прогнозирования. Среднее значение MAE по итогам 5-фолдовой кросс-

валидации составило 1.223 м³/сут.  

Такой уровень погрешности свидетельствует о том, что предложенный алгоритм в целом 

способен с высокой точностью воспроизводить реальные значения расхода нефти.  
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Также следует отметить низкое стандартное отклонение MAE между фолдами, что 

указывает на стабильность модели и её обобщающую способность на разных подмножествах 

данных.  

Итоговое сравнение предсказанного объёмного расхода нефти с настоящим объёмным 

расходом нефти представлено на Рисунке 1. 

 
Рис унок1 - Сравнение предсказанного и реального объёмного расхода нефти 

 

Распределение относительной погрешности в зависимости от расхода показано на 

Рисунке 2.  

Наибольшая погрешность возникает на низких расходах, но на графике видно, что 

погрешность равномерно распределена и какие-либо выраженные систематическая 

зависимости отсутствуют. 

 
Рисунок 2 - Зависимость погрешности от величины реального расхода нефти 

 

В ходе исследования было проведено прогнозирование объёмного расхода нефти на 

основе современной модели машинного обучения – градиентного бустинга решающих 

деревьев.  
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Разработанный подход позволил учесть одновременно влияние основных 

технологических параметров (давление, диаметр штуцера, плотность и температура 

жидкости) и выявить нелинейные зависимости, неочевидные при использовании 

традиционных формул.  

Использование логарифмического преобразования целевой переменной и взвешивание 

ошибок по относительной значимости обеспечили высокую точность прогноза по всему 

диапазону расходов.  

Средняя относительная погрешность модели составила всего 2.5%, что свидетельствует 

о высоком качестве предсказаний.  

В результате разработанная модель сочетает в себе преимущества градиентного бустинга 

и аддитивной пост-обучающей поправки. 

Полученные зависимости соответствуют физическому смыслу, что подтверждает 

корректность подхода, а погрешность находится на приемлемом уровне для практических 

расчётов. 

Практическая ценность работы состоит в том, что предложенная модель может быть 

внедрена в систему оперативного мониторинга и управления, выдавая прогноз расхода нефти 

в реальном времени на основе текущих показателей давления, температуры и плотности.  

Высокая скорость работы алгоритма градиентного бустинга и его точность открывают 

возможности для прогнозирования аварийных ситуаций и оптимизации режима работы 

нефтяных скважин. 
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